I have a hard time understanding how we formalize sentences from "pure English" to "pure mathematics" (i.e. logic statements, propositions etc..). Furthermore I don't get how we should formalize sentences which are false by their "core", for example:
- "Every positive number is a sum of at most 4 integers".
My guess is:
$$ \forall n \in \mathbb{N} \exists a,b,c,d,e \in \mathbb{Z} . n =a+b+c+d+e \wedge ( (a=b) \vee (b=c) \vee (d=e) \vee (b=d) \vee (b=e) \vee (a=e) ...) $$
I tried to implement the "at most four integers" part, which is hard to understand. Also, this sentence is false at its core, I mean, it is true because every positive number is indeed a sum of 4 integers (false & positive + 0) but, the it states that "at most" which is not always true as we can get to every positive (or any number at this case) with 3 integers, 2 integers, 5, 6, etc... so why be specific on the four?
Or it doesn't really matter, because we treat this sentence as a "truth" and translate it no matter if it is false or true all the time?