$\underline{\text{A Reformulation}:-}$
I think we can use one of the asymptotic series expansion given in wolfram alpha:
$\textstyle\displaystyle{\Re W_x(x)=\Re\left(2x\pi i+\ln(x)-\ln(2x\pi i+\ln(x))-\sum_{n=1}^{\infty}(2x\pi i+\ln(x))^{-n}\sum_{m=1}^{n}\frac{(-1)^n}{m!}S_n^{(1+n-m)}\ln^m(2x\pi i+\ln(x))\right)}$
For, $\ln(2x\pi i+\ln(x))$ we can write the expression inside the logarithm in the polar form:
$\ln(re^{i\theta})$ where $r=\sqrt{4x^2\pi^2+\ln^2(x)}$ and since $x>0$ we have $\theta=\tan^{-1}\left(\frac{2x\pi}{\ln(x)}\right)$
So, $\ln(2x\pi i+\ln(x))=\frac{1}{2}\ln(4x^2\pi^2+\ln^2(x))+i\tan^{-1}\left(\frac{2x\pi}{\ln(x)}\right)$
And, $\textstyle\displaystyle{(2x\pi i+\ln(x))^{-n}=\left(\frac{\ln(x)-2x\pi i}{4x^2\pi^2+\ln^2(x)}\right)^n}$
So, $\textstyle\displaystyle{\Re W_x(x)=\ln(x)-\frac{1}{2}\ln(4x^2\pi^2-\ln^2(x))-\Re\left(\sum_{n=1}^{\infty}\left(\frac{\ln(x)-2x\pi i}{4x^2\pi^2+\ln^2(x)}\right)^n\sum_{m=1}^{n}\frac{(-1)^n}{m!}S_n^{(1+n-m)}\left(\frac{1}{2}\ln(4x^2\pi^2+\ln^2(x))+i\tan^{-1}\left(\frac{2x\pi}{\ln(x)}\right)\right)^m\right)}$
$\textstyle\displaystyle{\lim_{x\rightarrow\infty}\Re W_x(x)=\ln\left(\lim_{x\rightarrow\infty}\frac{x}{\sqrt{4x^2\pi^2-\ln^2(x)}}\right)-\lim_{x\rightarrow\infty}\left(\Re\left(\sum_{n=1}^{\infty}\left(\frac{\ln(x)-2x\pi i}{4x^2\pi^2+\ln^2(x)}\right)^n\sum_{m=1}^{n}\frac{(-1)^n}{m!}S_n^{(1+n-m)}\left(\frac{1}{2}\ln(4x^2\pi^2+\ln^2(x))+i\tan^{-1}\left(\frac{2x\pi}{\ln(x)}\right)\right)^m\right)\right)}$
Let's do the limit inside the natural log first-
Let, $\textstyle\displaystyle{L=\lim_{x\rightarrow\infty}\frac{x}{\sqrt{4x^2\pi^2+\ln^2(x)}}}$
$\textstyle\displaystyle{L^2=\lim_{x\rightarrow\infty}\frac{x^2}{4x^2\pi^2+\ln^2(x)}}$
$\textstyle\displaystyle{\overset{\text{L.H.}\frac{\infty}{\infty}}{=}\lim_{x\rightarrow\infty}\frac{2x}{8x\pi^2+\frac{2}{x}\ln(x)}}$
$\textstyle\displaystyle{=\lim_{x\rightarrow\infty}\frac{x^2}{4x^2\pi^2+\ln(x)}}$
$\textstyle\displaystyle{\overset{\text{L.H.}\frac{\infty}{\infty}}{=}\lim_{x\rightarrow\infty}\frac{2x}{8x\pi^2+\frac{1}{x}}}$
$\textstyle\displaystyle{=\lim_{x\rightarrow\infty}\frac{2x}{8x\pi^2}}$
$\textstyle\displaystyle{=\frac{1}{2\pi}}$
$\implies\ln(L)=-\ln(2\pi)$
Which leaves us with the conclusion that your conjecture will be true if:
$\textstyle\displaystyle{\lim_{x\rightarrow\infty}\left(\sum_{n=1}^{\infty}\Re\bigg[\left(\frac{\ln(x)-2x\pi i}{4x^2\pi^2+\ln^2(x)}\right)^n\sum_{m=1}^{n}\frac{(-1)^n}{m!}S_n^{(1+n-m)}\left(\frac{1}{2}\ln(4x^2\pi^2+\ln^2(x))+i\tan^{-1}\left(\frac{2x\pi}{\ln(x)}\right)\right)^m\bigg]\right)=0}$
$\underline{\text{The Proof}:-}$
From this post we have that-
Assume $\sum_m f(m,1)>-\infty$. If for each $m$ we have $f(m,n)\le f(m,n')$ whenever $n\le n'$, then
$$\lim_n\sum_{m=1}^\infty f(m,n) = \sum_{m=1}^\infty\lim_n f(m,n).\tag1$$
Define, $\textstyle\displaystyle{f(n,x):=\Re\bigg[\left(\frac{\ln(x)-2x\pi i}{4x^2\pi^2+\ln^2(x)}\right)^n\sum_{m=1}^{n}\frac{(-1)^n}{m!}S_n^{(1+n-m)}\left(\frac{1}{2}\ln(4x^2\pi^2+\ln^2(x))+i\tan^{-1}\left(\frac{2x\pi}{\ln(x)}\right)\right)^m\bigg]}$
To apply the theorem we see that the function is not defined at $1$ because of the $\ln(x)$ in the denominator inside the inverse tangent, but we can define it in terms of a limit-
$f(n,1):=\lim_{x\rightarrow 1}f(n,x)$
$\textstyle\displaystyle{=\Re\lim_{x\rightarrow 1}\bigg[\left(\frac{\ln(x)-2x\pi i}{4x^2\pi^2+\ln^2(x)}\right)^n\sum_{m=1}^{n}\frac{(-1)^n}{m!}S_n^{(1+n-m)}\left(\frac{1}{2}\ln(4x^2\pi^2+\ln^2(x))+i\tan^{-1}\left(\frac{2x\pi}{\ln(x)}\right)\right)^m\bigg]}$
$\textstyle\displaystyle{=\Re\left[\lim_{x\rightarrow 1}\bigg[\left(\frac{\ln(x)-2x\pi i}{4x^2\pi^2+\ln^2(x)}\right)^n\bigg]\sum_{m=1}^{n}\frac{(-1)^n}{m!}S_n^{(1+n-m)}\lim_{x\rightarrow 1}\bigg[\left(\frac{1}{2}\ln(4x^2\pi^2+\ln^2(x))+i\tan^{-1}\left(\frac{2x\pi}{\ln(x)}\right)\right)^m\bigg]\right]}$
$\textstyle\displaystyle{=\Re\left[0×\sum_{m=1}^{n}\frac{(-1)^n}{m!}S_n^{(1+n-m)}\left(\ln(2\pi)+i\frac{\pi}{2}\right)^m\right]}$
$\implies f(n,1)=0$
$\implies\sum_{n}f(n,1)=0>-\infty$
For the next condition I am not sure is the following reasoning correct or not, I would request the readers to correct me if I am wrong:
Since we are taking the discrete limit we have
$f(n,x)\leq f(n,x+1)$
$f(n,x+1)-f(n,x)\geq 0$
Since $x\rightarrow\infty$, we have-
$\textstyle\displaystyle{\lim_{x\rightarrow\infty}(f(n,x+1)-f(n,x))\geq 0}$
Notice that $f(n,x+1)\sim f(n,x)$ as $x\rightarrow\infty$, so
$\textstyle\displaystyle{\lim_{x\rightarrow\infty}(f(n,x+1)-f(n,x))\geq 0}$
$0\geq 0$
Which is trivially true.
So we can apply the theorem meaning that we can interchange the sum and the limit giving us-
$\textstyle\displaystyle{\lim_{x\rightarrow\infty}\left(\sum_{n=1}^{\infty}\Re\bigg[\left(\frac{\ln(x)-2x\pi i}{4x^2\pi^2+\ln^2(x)}\right)^n\sum_{m=1}^{n}\frac{(-1)^n}{m!}S_n^{(1+n-m)}\left(\frac{1}{2}\ln(4x^2\pi^2+\ln^2(x))+i\tan^{-1}\left(\frac{2x\pi}{\ln(x)}\right)\right)^m\bigg]\right)}$
$\textstyle\displaystyle{=\sum_{n=1}^{\infty}\sum_{m=1}^{n}\frac{(-1)^n}{m!}S_n^{(1+n-m)}\lim_{x\rightarrow\infty}\left(\Re\bigg[\left(\frac{\ln(x)-2x\pi i}{4x^2\pi^2+\ln^2(x)}\right)^n\left(\frac{1}{2}\ln(4x^2\pi^2+\ln^2(x))+i\tan^{-1}\left(\frac{2x\pi}{\ln(x)}\right)\right)^m\bigg]\right)}$
Notice that $n\geq m$, so for $m=n$ we see that the limit is $0$ from Wolfram Alpha. And for $n>m$ we can write $n=m+k$ so we have-
$\textstyle\displaystyle{\lim_{x\rightarrow\infty}\left(\Re\bigg[\left(\frac{\ln(x)-2x\pi i}{4x^2\pi^2+\ln^2(x)}\right)^n\left(\frac{1}{2}\ln(4x^2\pi^2+\ln^2(x))+i\tan^{-1}\left(\frac{2x\pi}{\ln(x)}\right)\right)^m\bigg]\right)}$
$\textstyle\displaystyle{=\Re\bigg[\left(\lim_{x\rightarrow\infty}\left(\frac{\ln(x)-2x\pi i}{4x^2\pi^2+\ln^2(x)}\right)^k\right)\left(\lim_{x\rightarrow\infty}\left(\frac{\ln(x)+2x\pi i}{4x^2\pi^2+\ln^2(x)}\right)^m\left(\frac{1}{2}\ln(4x^2\pi^2+\ln^2(x))+i\tan^{-1}\left(\frac{2x\pi}{\ln(x)}\right)\right)^m\right)\bigg]}$
Which is $0$ by this and this.
Which proves our statement.
$\underline{\text{Conclusion}:-}$
$\boxed{\textstyle\displaystyle{\lim_{x\rightarrow\infty}\Re\operatorname{W}_x(x)=-\ln(2\pi)}}$
$\underline{\text{Comment}:-}$
This was a really interesting equality. I never expected the branch cuts of the Lambert W Function to be this interesting(have a connection with $\pi$), that's why I never really looked into the branches of the productlog. And remember-
Every Time You're Not Running $\pi$ Is Getting closer.