17

Mathematica tells me that

$$\sum _{k=0}^n { n \choose k} \frac{(-1)^k}{2k+1} = \frac{(2n)!!}{(2n+1)!!}.$$

Although I have not been able to come up with a proof.

Proofs, hints, or references are all welcome.

8 Answers8

15

You could consider the integral $$ \int_{0}^{1} (1-x^2)^n dx .$$

  • 1
    Aha this is the integral I was searching for! Using the integral $\int_0^1 (1-t)^n , dt$ I was able to prove $\sum _{k=0}^n {n \choose k}\frac{(-1)^k}{k+1} = \frac{1}{n+1}$ I thought there should be a corresponding integral to my problem and after seeing your answer the integral I was searching for is obvious now! –  Sep 08 '10 at 11:02
  • @yjj Then have a look at https://en.wikipedia.org/wiki/Wallis'_integrals – Jean-Claude Arbaut Apr 08 '16 at 07:30
7

$$S_n=\sum\limits_{k=0}^n \dfrac{(-1)^k \binom{n}{k}}{2k+1}$$

We have:

$$\begin{align}S_n&=\dfrac{(-1)^n}{2n+1}+\sum\limits_{k=0}^{n-1} \dfrac{(-1)^k \binom{n}{k}}{2k+1}\\ &=\dfrac{(-1)^n}{2n+1}+\sum\limits_{k=0}^{n-1}\left[\dfrac{n}{n-k}.\dfrac{(-1)^k \binom{n-1}{k}}{(2k+1)}\right]\\ &=\dfrac{(-1)^n}{2n+1}+\dfrac{1}{2n+1}\sum\limits_{k=0}^{n-1}\left[\dfrac{n(2n+1)}{n-k}.\dfrac{(-1)^k \binom{n-1}{k}}{(2k+1)}\right]\\ &=\dfrac{(-1)^n}{2n+1}+\dfrac{1}{2n+1}\sum\limits_{k=0}^{n-1}\left[\dfrac{2n^2-2nk+2nk+n}{n-k}.\dfrac{(-1)^k \binom{n-1}{k}}{(2k+1)}\right]\\ &=\dfrac{(-1)^n}{2n+1}+\dfrac{1}{2n+1}\sum\limits_{k=0}^{n-1}\left[\dfrac{2n^2-2nk}{n-k}.\dfrac{(-1)^k \binom{n-1}{k}}{(2k+1)}\right]\\&+\dfrac{1}{2n+1}\sum\limits_{k=0}^{n-1}\left[\dfrac{2nk+n}{n-k}.\dfrac{(-1)^k \binom{n-1}{k}}{(2k+1)}\right]\\ &=\dfrac{(-1)^n}{2n+1}+\dfrac{2n}{2n+1}\sum\limits_{k=0}^{n-1}\dfrac{(-1)^k \binom{n-1}{k}}{(2k+1)}+\dfrac{1}{2n+1}\sum\limits_{k=0}^{n-1} \dfrac{n(-1)^k \binom{n-1}{k}}{n-k}\\ &=\dfrac{2n}{2n+1}\sum\limits_{k=0}^{n-1}\dfrac{(-1)^k \binom{n-1}{k}}{(2k+1)}+\dfrac{1}{2n+1}\sum\limits_{k=0}^{n-1} \left[(-1)^k \binom{n}{k}\right]+\dfrac{(-1)^n}{2n+1}\\ &=\dfrac{2n}{2n+1}\sum\limits_{k=0}^{n-1}\dfrac{(-1)^k \binom{n-1}{k}}{(2k+1)}+\dfrac{1}{2n+1}\sum\limits_{k=0}^n \left[(-1)^k \binom{n}{k}\right]\end{align}$$ Therefore, $$S_n=\dfrac{2n}{2n+1}S_{n-1}+0 \Rightarrow S_{n-1}=\dfrac{2n-2}{2n-1}S_{n-2} ... \Rightarrow S_1=\dfrac{2}{3}S_0$$ and $S_0=1$

Hence, $$S_n=\dfrac{2n(2n-2)...2}{(2n+1)(2n-1)...3.1}=\dfrac{(2n)!!}{(2n+1)!!}$$

user91500
  • 5,606
hxthanh
  • 71
7

Sums of the form $$\sum_{k=0}^n(-1)^k{n\choose k}f(k)$$ can often be attacked via the Calculus of finite differences.

Robin Chapman
  • 22,310
3

$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} \sum_{k = 0}^{n}{ n \choose k}{\pars{-1}^{k} \over 2k + 1} & = \sum_{k = 0}^{n}{ n \choose k}\pars{-1}^{k}\int_{0}^{1}x^{2k}\,\dd x = \int_{0}^{1}\sum_{k = 0}^{n}{ n \choose k}\pars{-x^{2}}^{k}\,\dd x = \int_{0}^{1}\pars{1 - x^{2}}^{n}\,\dd x \\[5mm] & = {1 \over 2}\int_{0}^{1}\pars{1 - x}^{n}x^{-1/2}\,\dd x = {1 \over 2}\,{\Gamma\pars{n + 1}\Gamma\pars{1/2} \over \Gamma\pars{n + 3/2}} \\[5mm] &= {n!\pars{1/2}! \over \pars{n + 1/2}!}\qquad\qquad\qquad \pars{~\mbox{Note that}\ {1 \over 2}\,\Gamma\pars{1 \over 2} = \Gamma\pars{3 \over 2} = \pars{1 \over 2}!~} \\[5mm] & = \bbx{1 \over \ds{n + 1/2 \choose n}} \end{align}

Felix Marin
  • 89,464
3

Your identity is a special case of the Chu-Vandermonde identity.

${}_2 F_1(-n,b;c;1)=\frac{(c-b)_n}{(c)_n}$

with $b=\frac12$ and $c=\frac32$. More info on it is in A=B, as mentioned already by John.

2

I can't offer specific help, but I'd recommend thumbing through Concrete Mathematics looking for techniques. It has many sums that look similar, though of course the difficulty is in the details.

There's also the book A=B, but Concrete Mathematics gives an introduction to the content of A=B and in my opinion is easier to read, so I'd start with Concrete Mathematics.

John D. Cook
  • 7,038
1

There are a powerful algorithms generalizing telescopy (Gosper, Zeilberger et al.) that easily tackle this case of the Chu-Vandermonde identity and much more complicated sums. For example, see this paper which gives as an application a very interesting q-analogy - namely that L. J. Rogers' classical finite version of Euler's pentagonal number theorem is simply the dual of a special case of a q-Chu-Vandermonde.

Bill Dubuque
  • 272,048
1

In trying to prove

$$S_n = \sum_{k=0}^n \frac{(-1)^k}{2k+1} {n\choose k} = \frac{(2n)!!}{(2n+1)!!}$$

we introduce

$$f(z) = n! (-1)^n \frac{1}{2z+1} \prod_{q=0}^n \frac{1}{z-q}.$$

This has the property that for $0\le k\le n$

$$\mathrm{Res}_{z=k} f(z) = n! (-1)^n \frac{1}{2k+1} \prod_{q=0}^{k-1} \frac{1}{k-q} \prod_{q=k+1}^n \frac{1}{k-q} \\ = n! (-1)^n \frac{1}{2k+1} \frac{1}{k!} \frac{(-1)^{n-k}}{(n-k)!} = \frac{(-1)^k}{2k+1} {n\choose k}.$$

Note that the residue of $f(z)$ at infinity is zero by inspection and residues sum to zero so that we have

$$S_n = \sum_{k=0}^n \mathrm{Res}_{z=k} f(z) = - \mathrm{Res}_{z=-1/2} f(z) \\ = - \frac{1}{2} \mathrm{Res}_{z=-1/2} \; n! (-1)^n \frac{1}{z+1/2} \prod_{q=0}^n \frac{1}{z-q} = - \frac{1}{2} n! (-1)^n \prod_{q=0}^n \frac{1}{-1/2-q} \\ = \frac{1}{2} n! \prod_{q=0}^n \frac{1}{1/2+q} = 2^n n! \prod_{q=0}^n \frac{1}{2q+1} = \frac{(2n)!!}{(2n+1)!!}.$$

This is the claim.

Marko Riedel
  • 61,317