$\newcommand{\angles}[1]{\left\langle\,{#1}\,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,\mathrm{Li}_{#1}}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
Since $\ds{\pars{2k}!! = 2^{k}\pars{k!} = 2^{k}\,\Gamma\pars{k + 1}}$ and $\ds{\pars{2k +1}!! = {\pars{2k + 2}! \over 2^{k + 1}\pars{k + 1}!} =
2^{-k - 1}\,\,{\Gamma\pars{2k + 3} \over \Gamma\pars{k + 2}}}$, we'll have:
$$
{\pars{2k}!! \over \pars{2k + 1}!!} =
2^{2k + 1}\,\,\,{\Gamma\pars{k + 1}\Gamma\pars{k + 2} \over \Gamma\pars{2k + 3}} =
2^{2k + 1}\int_{0}^{1}t^{k}\pars{1 - t}^{k + 1}\,\dd t
$$
and
\begin{align}
&\color{#f00}{\sum_{k = 0}^{n}\pars{-1}^{k}\,
{\pars{2k}!! \over \pars{2k + 1}!!}\,{n \choose k}} =
2\int_{0}^{1}\pars{1 - t}
\sum_{k = 0}^{n}{n \choose k}\bracks{-4t\pars{1 - t}}^{\, k}\,\,\dd t
\\[5mm] = &\
2\int_{0}^{1}\pars{1 - t}\bracks{1 - 4t\pars{1 - t}}^{\, n}\,\,\dd t =
\int_{0}^{1}\bracks{1 - 4t\pars{1 - t}}^{\, n}\,\,\dd t =
\color{#f00}{1 \over 2n + 1}
\end{align}
Note that
$\ds{1 - 4t\pars{1 - t} = 4\pars{t - \half}^{2}}$.