$\newcommand{\+}{^{\dagger}}
\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\right\vert\,}
\newcommand{\ket}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{\int_{0}^{\infty}{x^{2}\ln\pars{x} \over 1 + x^{4}}\,\dd x:\ {\large ?}}$
The following method 'avoids' the $\ds{\large\it\underline{\mbox{four poles}}}$ of the original integral.
Instead, we just have to consider a $\ds{\large\it\underline{\mbox{one pole-integral}}}$:
Note that
\begin{align}&\color{#c00000}{\int_{0}^{\infty}{\ln\pars{x} \over 1 + x^{4}}
\,\dd x}
=\int_{0}^{\infty}{x^{1/2}\ln\pars{x^{1/4}} \over 1 + x}\,{1 \over 4}\,x^{-3/4}\,\dd x
={1 \over 16}\int_{0}^{\infty}{x^{-1/4}\ln\pars{x} \over 1 + x}\,\dd x
\\[3mm]&={1 \over 16}\lim_{\mu\ \to\ -1/4}\partiald{}{\mu}\color{#00f}{%
\int_{0}^{\infty}{x^{\mu} \over 1 + x}\,\dd x}\tag{1}
\end{align}
\begin{align}
&\color{#00f}{\int_{0}^{\infty}{x^{\mu} \over 1 + x}\,\dd x}
=2\pi\ic\expo{\pi\mu\ic} - \int_{\infty}^{0}
{x^{\mu}\expo{2\pi\mu\ic} \over 1 + x}\,\dd x
\\[3mm]&\imp\quad
\color{#00f}{\int_{0}^{\infty}{x^{\mu} \over 1 + x}\,\dd x}
=2\pi\ic\,{\expo{\pi\mu\ic} \over 1 - \expo{2\pi\mu\ic}}
=-\pi\,{2\ic \over \expo{\pi\mu\ic} - \expo{-\pi\mu\ic}}
=\color{#00f}{-\,{\pi \over \sin\pars{\pi\mu}}}
\end{align}
Replacing in $\pars{1}$:
\begin{align}&\color{#66f}{\large\int_{0}^{\infty}{\ln\pars{x} \over 1 + x^{4}}
\,\dd x}
={1 \over 16}\bracks{\pi^{2}\cot\pars{\pi\mu}\csc\pars{\pi\mu}}_{\mu\ =\ -1/4}
=\color{#66f}{\large {\root{2} \over 16}\,\pi^{2}}
\approx -0.8724
\end{align}