It's an inequality I found nice let me propose it :
Let $0\leq x$ then we have :
$$\int_{0}^{\infty}\sin\left(x^{-x}\right)dx<\phi=\frac{\left(1+\sqrt{5}\right)}{2}\quad (I)$$
My attempt :
First of all I recall two facts :
Fact 1
$$\int_{0}^{1} x^{-x}\ dx = \sum_{n=1}^{\infty} n^{-n}$$
Fact 2:
Let $0\leq x\leq \frac{\pi}{2}$ then we have :
$$\sin\left(x\right)\leq x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}$$
Unfortunately it works on $J=[0,1]$ not on $[0,\infty]$ so see The "natural" Sophomore's Dream integral: $\int_{0}^{\infty} x^{-x}\ dx$ wich is a useful link .
Edit : for $x\in(1,\infty)$ it seems we have :
$$\left(e^{\left(-\frac{e}{\left(e-1\right)^{2}}\left(\left(\ln\left(x^{2}+e-1\right)\right)-e^{-1}\right)^{2}\right)}e^{\left(e^{-\left(1\cdot0.85+0.15\cdot\frac{1}{x}\right)}\right)}\right)\geq x^{-x}\quad(G)$$
Edit 2:
To show $(G)$ we first take the logarihthm on both side and then use the very well know expansion via Taylor's series of logarithm and exponential .Currently I don't see better . Then we have :
$$\int_{0}^{2}\sin\left(x^{-x}\right)dx+\int_{2}^{\infty}\left(e^{\left(-\frac{e}{\left(e-1\right)^{2}}\left(\ln\left(x^{2}+e-1\right)-e^{-1}\right)^{2}\right)}e^{e^{-\left(0.85+\frac{0.15}{x}\right)}}\right)dx<\frac{\left(1+\sqrt{5}\right)}{2}$$
Edit 3 : It seems we have on $(1,2)$ :
$$e^{-\left(\frac{x^{0.48}\left(x-1\right)}{2^{0.48}}\right)\cdot2\ln\left(2\right)}>x^{-x}$$
Edit 4:
It seems we have on $(0,1)$ :
$$e^{\left(1.02-0.02\cdot\frac{2x}{x+1}-x\right)\cdot2^{0.6}x^{0.6}\ln\left(2\right)}> x^{-x}$$
And :
For $2\leq x\leq 6$ :
$$e^{\left(-\left(x-1\right)^{\frac{93}{100}}x^{0.5}\cdot2^{0.5}\ln\left(2\right)\right)}\geq x^{-x}$$
Edit 5:
Following an answer due to user Michael Rozenberg here ( Which is greater $\frac{13}{32}$ or $\ln \left(\frac{3}{2}\right)$ ) we have for $0<x<1$ :
$$e^{-x\left(x-1\right)\left(\frac{2}{x^{2}+x}\right)^{\frac{1}{3}}}> x^{-x}$$
Question :
How to show the inequality $(I)$ ?