Just based on approximations.
First of all, a Taylor expansion
$$\log (1-x \cot (x))=2\log(x)-\log(3)+\frac 13\sum_{n=1}^\infty \frac {a_n}{5^n\,b_n} x^{2n}$$ where the first $a_n$'s are
$$\{1,13,22,907,55282,298183,738788,11537791247,\cdots\}$$ the first $b_n$'s are
$$\{1,42,189,19404,2837835,35756721,202621419,7114443263928,\cdots\}$$ makes the series to converge very fast. Truncating and using $p$ terms give the following numerical results
$$\left(
\begin{array}{cc}
p & I_p\\
1 & -3.362471345 \\
2 & -3.354577981 \\
3 & -3.353531646 \\
4 & -3.353370377 \\
5 & -3.353343240 \\
6 & -3.353338390 \\
7 & -3.353337483 \\
8 & -3.353337307 \\
9 & -3.353337272 \\
10 & -3.353337265
\end{array}
\right)$$
Another,almost equivalent, possibility could be to use the $[2p,4]$ Padé approximant of the integrand and use partial fraction decomposition
$$\left(
\begin{array}{cc}
p & I_p \\
1 & -3.353356609 \\
2 & -3.353338184 \\
3 & -3.353337337 \\
4 & -3.353337269 \\
5 & -3.353337263
\end{array}
\right)$$
Just for the fun of it, the result is "close" to
$$-\frac{1}{10} \zeta \left(\frac{1}{2}\right) \left(\frac{1}{2}-\Gamma
\left(\frac{1}{24}\right)\right)$$ which is in a relative error of $5.75 \times 10^{-7}$%.
Edit
In a comment, @James Arathoon suggested to work instead
$$\int_0^{\frac{\pi }{2}} \left(\log \left(\frac{x^3}{3}\right)-\log (\cos (x))\right) \, dx+\int_0^{\frac{\pi }{2}} \log \left(-\frac{3 (x \cos (x)-\sin (x))}{x^3}\right) \, dx$$
The first integral does not make any problem
$$\int_0^{\frac{\pi }{2}} \left(\log \left(\frac{x^3}{3}\right)-\log (\cos (x))\right) \, dx=-\frac{\pi}{2} (3+\log (12)-3 \log (\pi ))$$
The second integrand can write
$$\log \left(-\frac{3 (x \cos (x)-\sin (x))}{x^3}\right)=-\sum_{n=1}^\infty \frac {c_n}{5^n\,d_n} x^{2n}$$ where the first $c_n$'s are
$$\{1,1,1,37,59,2753,1654,\cdots\}$$ and the first $d_n$'s are
$$\{2,28,189,38808,315315,71513442,202621419,\cdots\}$$ and the convergence is quite fast.
$$\int_0^{\frac{\pi}{2}} \log(1 - x \cot (x)) \, dx=
-\frac{\pi}{2} (3+\log (12)-3 \log (\pi ))-$$ $$\frac{\pi ^3}{240}\Bigg[1+\frac{3 \pi ^2}{1400}+\frac{\pi ^4}{88200}+\frac{37 \pi ^6}{465696000}+\frac{59 \pi ^8}{92492400000}+\cdots \Bigg]$$ Using the above terms leads to an absolute error equal to $7.39 \times 10^{-8}$.
Using the $[8,4]$ Padé approximant and partial fraction decomposition leads to an absolute error equal to $5.72 \times 10^{-11}$.
Update
Using the same approach as @River Li
$$I = \int_0^{\frac \pi 2} \log(1 - x\cot (x))\,dx
= - \frac{\pi^3}{24} + \frac{\pi}{2}\log( 2) - \int_0^{\pi/2} \frac{x^3}{\tan (x) - x} \,dx$$ we can easily build the $[2p,4]$ Padé approximant of the left integrand which write
$$\frac{x^3}{\tan (x) - x} =\frac {3+\sum_{k=1}^p a_k\,x^{2k} } {1+b_1 x^2+b_2 x^4 }$$ the integration of which leading to a polynomial of degree $(2p-1)$ plus two hyperbolic arctangents.
As a function of $p$ the result of this integration is given below
$$\left(
\begin{array}{cc}
2 & \color{red}{3.150202}313227377435283622 \\
3 & \color{red}{3.15020211}4234142271205176 \\
4 & \color{red}{3.1502021130}45512153905225 \\
5 & \color{red}{3.15020211302}9044077891702 \\
6 & \color{red}{3.15020211302878}5049324311 \\
7 & \color{red}{3.150202113028780}655331848 \\
8 & \color{red}{3.15020211302878057}7184507 \\
9 & \color{red}{3.1502021130287805757}51197 \\
10 & \color{red}{3.15020211302878057572}4358 \\
11 & \color{red}{3.1502021130287805757238}48 \\
12 & \color{red}{3.150202113028780575723839}
\end{array}
\right)$$
$$x^n=\frac{1}{n+1}\sum_{j=0}^{n} \begin{pmatrix} {n+1} \ j \end{pmatrix} B_{j}(x)$$
– user6262 Mar 21 '21 at 18:45