$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\on}[1]{\operatorname{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
J & \equiv \bbox[5px,#ffd]{\int_{0}^{\infty}{x^{3} \over
\expo{x} - 1}\ln\pars{\expo{x} - 1}\,\dd x}
\\[5mm] & =
\left.\partiald{}{\nu}\int_{0}^{\infty}x^{3}
\pars{\expo{x} - 1}^{\nu}\,\dd x
\,\right\vert_{\,\nu\ =\ -1}
\\[5mm] & =
\left.\partiald{}{\nu}\int_{0}^{\infty}x^{3}\expo{\nu x}
\pars{1 - \expo{-x}}^{\nu}\,\dd x
\,\right\vert_{\,\nu\ =\ -1}
\\[5mm] & =
\left.\partiald{}{\nu}\sum_{k = 0}^{\infty}{\nu \choose k}
\pars{-1}^{k}\int_{0}^{\infty}x^{3}\expo{-\pars{k - \nu}x}
\,\,\dd x\,\right\vert_{\,\nu\ =\ -1}
\\[5mm] & =
\left.\partiald{}{\nu}\sum_{k = 0}^{\infty}
{-\nu + k - 1\choose k}\,{6 \over \pars{k - \nu}^{4}}\,\right\vert_{\,\nu\ =\ -1}
\\[5mm] & =
24\sum_{k = 0}^{\infty}{1 \over \pars{k + 1}^{5}} -
6\sum_{ k = 0}^{\infty}{H_{k} \over \pars{k + 1}^{4}}
\\[5mm] & =
30\,\underbrace{\sum_{k = 1}^{\infty}{1 \over k^{5}}}
_{\ds{\zeta\pars{5}}}\ -\
6\
\underbrace{\sum_{ k = 1}^{\infty}{H_{k} \over k^{4}}}
_{\ds{3\zeta\pars{5} - \pi^{2}\zeta\pars{3}/6}}
\\[5mm] & =
\bbx{\pi^{2}\,\zeta\pars{3} + 12\,\zeta\pars{5}}
\approx 24.3070 \\ &
\end{align}
$\ds{\sum_{ k = 1}^{\infty}{H_{k} \over k^{4}}}$: See $\ds{\pars{20}}$ in MW.