I'm trying to find to value of: $$ J=\int_{0}^{\infty}\frac{x^3}{e^x-1}\ln(x)\,dx $$
Here's what I've done:
$$ \ln(x)=-\sum_{n=1}^{\infty}\frac{(-1)^n}{n}(x-1)^n=-\sum_{n=1}^{\infty}\frac{(-1)^n}{n}\sum_{m=0}^{\infty}{n\choose m} (-1)^{n-m}x^m $$ Therefore: $$ J=-\sum_{n=1}^{\infty}\frac{(-1)^n}{n}\sum_{m=0}^{\infty}{n\choose m} (-1)^{n-m}\int_{0}^{\infty}\frac{x^{m+3}}{e^x-1}\,dx \\= -\sum_{n=1}^{\infty}\frac{(-1)^n}{n}\sum_{m=0}^{\infty}{n\choose m} (-1)^{n-m} \Gamma(m+4) \zeta(m+4)\\ = -\sum_{n=1}^{\infty}\frac{1}{n}\sum_{m=0}^{\infty}{n\choose m} (-1)^{m}(m+3)! \zeta(m+4)\\ =-\sum_{n=1}^{\infty}(n-1)!\sum_{m=0}^{\infty}\frac{(-1)^{m}}{(n-m)!}(m+3)(m+2)(m+1) \zeta(m+4)\\ $$ And I'm stuck. If someone could point me in the right direction, that would be great. Mathematica gives the answer as $\frac{\pi^4}{90}(11-6\gamma)+6\zeta'(4)$.