70

Show that : $$ \int_{0}^{\Large\frac\pi2} {\ln^{2}\left(\vphantom{\large A}\cos\left(x\right)\right) \ln^{2}\left(\vphantom{\large A}\sin\left(x\right)\right) \over \cos\left(x\right)\sin\left(x\right)}\,{\rm d}x ={1 \over 4}\, \bigg[2\,\zeta\left(5\right) - \zeta\left(2\right)\zeta\left(3\right) \bigg] $$

I can only do non squared one. Anyone has a clue?

Ali Shadhar
  • 25,498
Ryan
  • 3,945
  • 3
    What is so nice about it? – Kaster Jan 30 '13 at 02:48
  • 2
    It is interesting, in that neither of $\zeta(3),\ \zeta(5)$ are "known", in the sense that $\zeta(2)=\pi^2/6$ is known. – coffeemath Jan 31 '13 at 09:03
  • 2
    Please, make titles more informative. – Pedro May 28 '13 at 18:55
  • I agree with mrtaurho that the harmonic numbers tag is less pertinent here even if the question is implicitly associated with them. Only the $\approx 5$ most pertinent tags should be used. I think the harmonic numbers tag would be as appropriate as "logarithms" or "trigonometry" tags. That being said, I disagree with mrtaurho that in general tags should only be used if they are alluded to in the question body since an asker may be unaware that their question is intrinsically part of some field unknown to them. – Jam Feb 15 '20 at 23:30
  • @AliShather Well personally I'd consider removing the integration and calculus tags since they're redundant given the other integral tags. – Jam Feb 15 '20 at 23:37
  • 1
    I edited again the tags deleting the tag "harmonic numbers" because it is completely unrelated to the question despite the fact that some solutions can be stated in terms of harmonic numbers – Masacroso Feb 16 '20 at 14:39
  • 1
    @AliShather the tags are for the question, not for particular answers. I called for moderation about this particular matter, let the moderators decide if this is correct or not, to me is clearly not – Masacroso Feb 16 '20 at 16:27
  • @Masacroso, and everyone else, tags are meant to direct users to helpful content. That means that it is not necessarily a bad idea to retroactively add tags relevant to answers. Nevertheless, due to the limited tagging space there should be a preference for tags relevant to the question. As I am far from an expert on any and all of these mathematical topics here, I'll leave you to figure out the correct tags, preferably on chat, and I expect that it's done amicably. At the end of the day, we're all here to make this site better. – Asaf Karagila Feb 17 '20 at 10:49
  • @AliShather Pinging you as well on the above comment. – Asaf Karagila Feb 17 '20 at 10:50

5 Answers5

38

Related problems: (I), (II), (III), (IV), (V), (6). Use the change of variables $\ln(\cos(x))=t$ to transform the integral to

$$ I = \int_{0}^{\frac{\pi }{2}}{\frac{{{\ln }^{2}}\cos x{{\ln }^{2}}\sin x}{\cos x\sin x}}\text{d}x = \frac{1}{4}\,\int _{-\infty }^{0}\!{\frac {{t}^{2} \left( \ln \left( 1-{ {\rm e}^{2\,t}} \right)\right) ^{2}}{1-{{\rm e}^{2t}}}}{dt}.$$

Follow it by another change of variables $ 1-e^{2t}=z $ gives

$$\frac{1}{4}\,\int _{-\infty }^{0}\!{\frac {{t}^{2} \left( \ln \left( 1-{ {\rm e}^{2\,t}} \right) \right) ^{2}}{1- {{\rm e}^{2t}} }}{dt}= \frac{1}{32}\,\int _{0}^{1}\!{\frac { \left( \ln \left( 1-z \right) \right) ^{2} \left( \ln \left( z \right) \right) ^{2}}{z \left( 1- z\right) }}{dz}$$

$$= \frac{1}{32}\,\int _{0}^{1}\!{\frac { \left( \ln \left( 1-z \right) \right) ^{2} \left( \ln \left( z \right) \right) ^{2}}{z }}{dz}+\frac{1}{32}\,\int _{0}^{1}\!{\frac { \left( \ln\left( 1-z \right) \right) ^{2} \left( \ln \left( z \right) \right) ^{2}}{ \left( 1- z\right) }}{dz} $$

$$ \implies I = \frac{1}{16}\,\int _{0}^{1}\!{\frac { \left( \ln \left( 1-z \right) \right) ^{2} \left( \ln \left( z \right) \right) ^{2}}{z }}{dz}\longrightarrow (1). $$

Getting the exact result: Integral (1) can be evaluated as

$$ \frac{1}{16}\,\int _{0}^{1}\!{\frac { \left( \ln \left( 1-z \right) \right)^{2} \left( \ln \left( z \right) \right)^{2}}{z }}{dz}=\frac{1}{16} \lim_{w\to 0}\lim_{s\to 0^+}\frac{d^2}{dw^2}\frac{d^2}{ds^2}\int_{0}^{1} (1-z)^{w}z^{s-1}dz $$

$$ = \frac{1}{16}\lim_{w\to 0}\lim_{s\to 0^+}\frac{d^2}{dw^2}\frac{d^2}{ds^2}\beta(s,w+1)=\frac{1}{16}\lim_{w\to 0}\lim_{s\to 0^+}\frac{d^2}{dw^2}\frac{d^2}{ds^2}\frac{\Gamma(s)\Gamma(w+1)}{\Gamma(s+w+1)}$$

$$ I=\frac{1}{4}\left( 2\zeta \left( 5 \right)-\zeta \left( 2 \right)\zeta \left( 3 \right) \right) \longrightarrow (*), $$

where $\beta(u,v)$ is the beta function.

Other forms for the solution 1: Using integration by parts with $u=\ln^2(1-z)$, integral $(1)$ can be written as

$$ \frac{1}{16}\,\int _{0}^{1}\!{\frac { \left( \ln \left( 1-z \right) \right)^{2} \left( \ln \left( z \right)\right)^{2}}{z }}{dz}=\frac{1}{24}\,\int _{0}^{1}\!{\frac{ \ln\left( 1-z \right)\left( \ln \left( z \right) \right)^{3}}{1-z}}{dz} $$

$$ = -\sum_{n=0}^{\infty}(\psi(n+1)+\gamma)\int_{0}^{1}z^n\ln^3(z)dz = \frac{1}{4}\sum_{n=0}^{\infty}\frac{\psi(n+1)+\gamma}{(n+1)^4}. $$

$$ I= \frac{1}{4}\sum_{n=1}^{\infty}\frac{\psi(n)}{n^4}+\frac{\gamma}{4}\zeta(4)\sim 0.02413779000 \longrightarrow (**). $$

You can use the identity $ H_{n-1}=\psi(n)+\gamma $, where $H_n$ are the harmonic numbers, to write the result as

$$ I=\frac{1}{4}\sum_{n=1}^{\infty}\frac{H_{n-1}}{n^4} \longrightarrow (***). $$

Other forms for the solution 2: We can have the following form for the solution

$$ I=\frac{1}{16}\sum_{n=1}^{\infty}\frac{H^2_{n}}{n^3}+\frac{1}{16}\sum_{n=1}^{\infty}\frac{\psi'(n+1)}{n^3}-\frac{1}{16}\zeta(2)\zeta(3)\longrightarrow (****). $$

Note 1: we used the power series expansion of the function $ \frac{\ln(1-z)}{1-z}, $

$$\frac{\ln(1-z)}{1-z}= -\sum _{n=0}^{\infty } \left( \psi \left( n+1 \right) + \gamma \right){x}^{n}=-\sum _{n=0}^{\infty } H_{n}{x}^{n}. $$

Note 2: Try to tackle integral $(1)$ using the technique used in solving your previous question.

10

Mhenni Benghorbal gave a way to solve the problem. Unfortunately, he did not show how to get $$ \lim_{w\to0}\lim_{s\to0}\frac{d^2}{dw^2}\frac{d^2}{ds^2}\frac{\Gamma(s)\Gamma(w+1)}{\Gamma(s+w+1)}. $$ I want to finish the missed part which is not easy to get. In order to evaluate this limit, we have to use $$ \Gamma'(x)=\Gamma(x)\psi_0(x), \psi_n'(x)=\psi_{n+1}(x). $$ It is not hard to get \begin{eqnarray*} \frac{d^2}{dw^2}\frac{\Gamma(s)\Gamma(w+1)}{\Gamma(s+w+1)}&=&\frac{\Gamma(s)\Gamma(w+1)}{\Gamma(s+w+1)}(\psi_0^2(w+1)-2\psi_0(w+1)\psi_0(s+w+1)\\ &&+\psi_0^2(s+w+1)+\psi_1(w+1)-\psi_1(s+w+1)). \end{eqnarray*} Note $$\psi_0(1)=-\gamma, \psi_1(1)=\frac{\pi^2}{6}$$ and hence \begin{eqnarray*} \lim_{w\to0}\frac{d^2}{dw^2}\frac{\Gamma(s)\Gamma(w+1)}{\Gamma(w+1)}&=&\lim_{w\to0}\frac{\Gamma(s)\Gamma(s+w+1)}{\Gamma(s+w+1)}(\psi_0^2(w+1)-2\psi_0(w+1)\psi_0(s+w+1)\\ &&+\psi_0^2(s+w+1)+\psi_1(w+1)-\psi_1(s+w+1))\\ &=&\frac{\Gamma(s)}{6\Gamma(s+1)}(6\gamma^2+\pi^2+12\gamma\psi_0(s+1)+6\psi_0^2(s+1)-6\psi_1(s+1)). \end{eqnarray*} Note $$ \frac{\Gamma(s)}{6\Gamma(s+1)}=\frac{1}{6s}+\mathcal{O}(s^3)$$ and $$ 6\gamma^2+\pi^2+12\gamma\psi_0(s+1)+6\psi_0^2(s+1)-6\psi_1(s+1)=-6\psi_2(1)s-\frac{\pi^4}{30}s^2+(\pi^2\psi_2(1)-\psi_4(1))s^3+\mathcal{O}(s^3)$$ and hence \begin{eqnarray*} &&\frac{\Gamma(s)}{6\Gamma(s+1)}(6\gamma^2+\pi^2+12\gamma\psi_0(s+1)+6\psi_0^2(s+1)-6\psi_1(s+1))\\ &=&-\psi_2(1)-\frac{\pi^4}{180}s+\frac{1}{6}(\pi^2\psi_2(1)-\psi_4(1))s^2+\mathcal{O}(s^3). \end{eqnarray*} Thus \begin{eqnarray} \lim_{s\to0}\lim_{w\to0}\frac{d^2}{ds^2}\frac{d^2}{dw^2}\frac{\Gamma(s)\Gamma(w+1)}{\Gamma(w+1)} &=&\lim_{s\to0}\frac{d^2}{ds^2}\frac{\Gamma(s)}{6\Gamma(s+1)}(6\gamma^2+\pi^2+12\gamma\psi_0(s+1)+6\psi_0^2(s+1)-6\psi_1(s+1))\\ &=&\frac{1}{3}(\pi^2\psi_2(1)-\psi_4(1)). \end{eqnarray} So $$ \frac{1}{16}\lim_{w\to0}\lim_{s\to0}\frac{d^2}{dw^2}\frac{d^2}{ds^2}\frac{\Gamma(s)\Gamma(w+1)}{\Gamma(s+w+1)}=\frac{1}{48}(\pi^2\psi_2(1)-\psi_4(1)). $$ Finally note $$ \zeta(2)=\frac{\pi^2}{6},\psi_2(1)=-2\zeta(3),\psi_4(1)=-24\zeta(5) $$ and hence $$ \frac{1}{16}\lim_{w\to0}\lim_{s\to0}\frac{d^2}{dw^2}\frac{d^2}{ds^2}\frac{\Gamma(s)\Gamma(w+1)}{\Gamma(s+w+1)}=\frac{1}{48}(\pi^2\psi_2(1)-\psi_4(1))=\frac{1}{4}(2\zeta(5)-\zeta(2)\zeta(3)). $$

xpaul
  • 44,000
10

Here is another way to solve the integral. Let $$ \mathcal{I}=\int_0^{\Large\frac\pi2}\frac{\ln^2(\cos x)\ln^2(\sin x)}{\cos x\sin x}\ dx. $$ Multiplying $\,\mathcal{I}\,$ by $\,\dfrac{2\sin x\cos x}{2\sin x\cos x}\,$ and setting $\,t=\sin^2x\,$ yield \begin{align} \frac1{32}\int_0^1\frac{\ln^2(1-t)\ln^2t}{(1-t)\ t}\ dt&=\frac1{32}\left[\int_0^1\frac{\ln^2(1-t)\ln^2t}{t}\ dt+\color{blue}{\underbrace{\color{black}{\int_0^1\frac{\ln^2(1-t)\ln^2t}{1-t}\ dt}}_{\color{red}{x\ \mapsto\ 1-x}}}\right]\\ &=\frac1{16}\int_0^1\frac{\ln^2(1-t)\ln^2t}{t}\ dt. \end{align} The latter integral can be evaluated using IBP by setting $$u=\ln^2(1-t)\ \color{red}{\Rightarrow}\ du=-\dfrac{2\ln(1-t)}{1-t}\quad \text{and}\quad dv=\dfrac{\ln^2t}{t}\ dt\ \color{red}{\Rightarrow}\ v=\dfrac13\ln^3t.$$ Hence \begin{align} \frac1{16}\int_0^1\frac{\ln^2(1-t)\ln^2t}{t}\ dt&=\frac1{16}\left[\left.\frac13\ln^3t\ln^2(1-t)\right|_{t=0}^1+\frac23\int_0^1\frac{\ln(1-t)\ln^3t}{1-t}\ dt\right]\\ &=\frac1{24}\int_0^1\frac{\ln(1-t)\ln^3t}{1-t}\ dt. \end{align} The latter integral has been evaluated in my other answer (click the link below). \begin{align} \color{blue}{\int\frac{\ln^3x\ln (1-x)}{1-x}\ dx}=&\ -\mathbf{H}_{1}(x)\ln^3x+\operatorname{Li}_2(x)\ln^3x+3\,\mathbf{H}_{2}(x)\ln^2x-3\operatorname{Li}_3(x)\ln^2x\\&\ -6\,\mathbf{H}_{3}(x)\ln x+6\operatorname{Li}_4(x)\ln x+6\,\mathbf{H}_{4}(x)-6\operatorname{Li}_5(x), \end{align} where $\displaystyle\mathbf{H}_{k}(x)=\sum_{n=0}^\infty\frac{H_nx^n}{n^k}$ and $$ \mathbf{H}_{k}(1)=\frac{(k+2)}2\zeta(k+1)-\frac12\sum_{m=1}^{k-2}\zeta(k-m)\zeta(m+1)\quad;\quad\text{for}\ k\in\mathbb{Z}\ge2. $$

Therefore \begin{align} \int_0^1\frac{\ln^3x\ln (1-x)}{1-x}\ dx=6\,\mathbf{H}_{4}(1)-6\operatorname{Li}_5(1)=12\zeta(5)-6\zeta(2)\zeta(3). \end{align} Alternatively, we can also use the following technique \begin{align} \int_0^1\frac{\ln^3x\ln (1-x)}{1-x}\ dx&=-\int_0^1\sum_{n=1}^\infty H_nx^n\ln^3x\ dx\\ &=-\sum_{n=1}^\infty H_n\int_0^1x^n\ln^3x\ dx\\ &=\sum_{n=1}^\infty\frac{3!\ H_n}{(n+1)^4}\tag1\\ &=6\sum_{n=1}^\infty\left[\frac{H_n}{n^4}-\frac1{n^5}\right]\tag2\\ &=6\bigg[3\zeta(5)-\zeta(2)\zeta(3)-\zeta(5)\bigg]\\ &=6\bigg[2\zeta(5)-\zeta(2)\zeta(3)\bigg].\\ \end{align} Thus $$ I=\frac1{24}\int_0^1\frac{\ln(1-t)\ln^3t}{1-t}\ dt=\color{blue}{\frac14\bigg[2\zeta(5)-\zeta(2)\zeta(3)\bigg]}.\tag{Q.E.D.} $$


Notes :

$\displaystyle[1]\ \ \int_0^1 x^\alpha \ln^n x\ dx=\frac{(-1)^n n!}{(\alpha+1)^{n+1}}, \qquad\text{for }\ n=0,1,2,\ldots$

$\displaystyle[2]\ \ H_{n+1}-H_n=\frac1{n+1}$

Tunk-Fey
  • 24,849
4

\begin{align} I&=\int_0^{\pi/2}\frac{\ln^2\cos x\ln^2\sin x}{\cos x\sin x}\ dx\overset{\sin x=u}{=}\frac1{4}\int_0^1\frac{\ln^2(1-x^2)\ln^2x}{x(1-x^2)}\ dx\\ &=\frac1{32}\int_0^1\frac{\ln^2(1-x)\ln^2x}{x(1-x)}\ dx\\ &=\frac1{32}\int_0^1\frac{\ln^2(1-x)\ln^2x}{x}\ dx+\frac1{32}\underbrace{\int_0^1\frac{\ln^2(1-x)\ln^2x}{1-x}\ dx}_{\large{1-x\ \mapsto\ x}}\\ &=\frac1{16}\int_0^1\frac{\ln^2(1-x)\ln^2x}{x}\ dx\\ &=\frac18\sum_{n=1}^{\infty}\left(\frac{H_n}{n}-\frac{1}{n^2}\right)\int_0^1x^{n-1}\ln^2x\ dx=\frac14\sum_{n=1}^{\infty}\left(\frac{H_n}{n^4}-\frac{1}{n^5}\right)\\ &=\frac14\left(3\zeta(5)-\zeta(2)\zeta(3)-\zeta(5)\right)\\ &=\frac14\left(2\zeta(5)-\zeta(2)\zeta(3)\right) \end{align}

Ali Shadhar
  • 25,498
0

Let $x=\sin ^2 \theta$, then $$ \begin{aligned} \int_0^1 \frac{\ln ^2(1-x) \ln ^2 x}{x} d x&=\int_0^1 \frac{\ln ^2\left(\cos ^2 \theta\right) \ln ^2\left(\sin ^2 \theta\right)}{\sin ^2 \theta} 2 \sin \theta d \theta\\ &=32 \int_0^{\frac{\pi}{2}} \frac{\ln ^2(\cos \theta) \ln ^2(\sin \theta)}{\tan \theta} d \theta\\ &=\left.32 \cdot \frac{1}{2} \frac{\partial^4}{\partial a^2 \partial b^2} B\left(\frac{a}{2}, \frac{b}{2}+1\right)\right| _{{a \rightarrow 0}, {b \rightarrow 0}}\\ &=\lim _{a \rightarrow 0} \lim _{b \rightarrow 1}\left[\frac{\partial^{4}}{\partial a^2\partial b^2} B(a, b)\right] \end{aligned} $$

Lai
  • 20,421