I have a way of showing this directly, using Laplace transforms. In case you are new to this, a Laplace transform of a function $f(t)$ is
$$\hat{f}(s) = \int_0^{\infty} dt \, f(t) \, e^{-s t}$$
We begin with the following interesting formula. If $\hat{f}$ and $\hat{g}$ are the Laplace transforms of $f$ and $g$, respectively, then
$$\int_0^{\infty} du \, f(u) \hat{g}(u) = \int_0^{\infty} du \, \hat{f}(u) g(u)$$
Here, let $f(t) = \sin^{2 n+1}(t)$ and $\hat{g}(s) = 1/s$. Hopefully, it is clear that $g(t) = 1$. The computation of $\hat{f}(s)$, however, is a bit messy, albeit possible:
$$\begin{align} \hat{f}(s) &= \int_0^{\infty} dt \, \sin^{2 n+1}{(t)} \, e^{-s t} \\ &= \frac{1}{(2 i)^{2 n+1}} \sum_{k=0}^{2 n+1} (-1)^k \binom{2 n+1}{k} \int_0^{\infty} dt \, e^{i(2 n+1-2 k)t} e^{-s t}\\&=\frac{1}{(2 i)^{2 n+1}} \sum_{k=0}^{2 n+1} (-1)^k \binom{2 n+1}{k} \frac{1}{s-i(2 n+1-2 k)}\\&= \frac{(-1)^n}{2^{2 n}} \sum_{k=0}^n (-1)^k \binom{2 n+1}{k} \frac{2 n+1-2 k}{s^2+(2 n+1-2 k)^2}\end{align}$$
For that last step, I combined the $k$th and $(n-k)$th terms in the previous sum. The quantity we seek is
$$\begin{align}\int_0^{\infty} dx \frac{\sin^{2 n+1}{x}}{x} &= \frac{(-1)^n}{2^{2 n}} \sum_{k=0}^n (-1)^k \binom{2 n+1}{k} \int_0^{\infty} du \frac{2 n+1-2 k}{u^2+(2 n+1-2 k)^2}\\&= \frac{(-1)^n \pi}{2^{2 n+1}} \sum_{k=0}^n (-1)^k \binom{2 n+1}{k} \end{align}$$
It turns out that
$$\sum_{k=0}^n (-1)^k \binom{2 n+1}{k} = (-1)^n \binom{2 n}{n}$$
which fortuitously leads us to the stated result:
$$\int_0^{\infty} dx \frac{\sin^{2 n+1}{x}}{x} = \frac{\pi}{2^{2 n+1}} \binom{2 n}{n}$$
ADDENDUM
For a proof of the above sum, we use Knuth's negative index trick:
$$(-1)^k \binom{r}{k} = \binom{k-r-1}{k}$$
along with the well-known analog of a definite integral of a monomial:
$$\sum_{k=0}^n \binom{k+m}{k} = \binom{n+m+1}{n}$$
so that we have
$$\begin{align}\sum_{k=0}^n (-1)^k \binom{2 n+1}{k} &= \sum_{k=0}^n \binom{k-2 n-2}{k}\\&= \binom{n-2 n-1}{n} \\ &= \binom{-(n+1)}{n} \\ &= (-1)^n\binom{n+n+1-1}{n} \\ &= (-1)^n \binom{2 n}{n}\end{align}$$