Here is a fun integral I am trying to evaluate:
$$\int_{0}^{\infty}\frac{\sin^{2n+1}(x)}{x} \ dx=\frac{\pi \binom{2n}{n}}{2^{2n+1}}.$$
I thought about integrating by parts $2n$ times and then using the binomial theorem for $\sin(x)$, that is, using $\dfrac{e^{ix}-e^{-ix}}{2i}$ form in the binomial series.
But, I am having a rough time getting it set up correctly. Then, again, there is probably a better approach.
$$\frac{1}{(2n)!}\int_{0}^{\infty}\frac{1}{(2i)^{2n}}\sum_{k=0}^{n}(-1)^{2n+1-k}\binom{2n}{k}\frac{d^{2n}}{dx^{2n}}(e^{i(2k-2n-1)x})\frac{dx}{x^{1-2n}}$$
or something like that. I doubt if that is anywhere close, but is my initial idea of using the binomial series for sin valid or is there a better way?.
Thanks everyone.