5

This integral was a exercise in a calculus book called "Advanced Calculus Explored" I have tried many different techniques and the closest one i got to an answer was using feynamn's technique . I have taken calc 1-3 and some other lower level math classes and a proof class but this integral has stumped me for months(working on it here and there). No elementary technique has got me close to a solution.

$ I = \displaystyle\int_{0}^{\infty}\frac{\sin^{2n+1}{x}}{x}dx $ where $n \in \ N $

The approach I found the most success with was

$I(a) = \displaystyle\int_{0}^{\infty}\frac{\sin^{2n+1}{x}}{x}e^{-ax}dx \Rightarrow I'(a) = -\displaystyle\int_{0}^{\infty}\sin^{2n+1}{x}e^{-ax}dx$

with initial condition $ \displaystyle\lim_{a \to \infty}I(a) = 0$.

After integration by parts I have got it down to

$I'(a) = -\frac{2n(2n+1)}{a^2}(I'(a) +\displaystyle\int_{0}^{\infty}\sin^{2n-1}{x}e^{-ax}dx)+ (2n+1)I'(a)dx$

$I'(a) = \frac{2n+1}{a^2+2n+1}\displaystyle\int_{0}^{\infty}\sin^{2n-1}{x}e^{-ax}dx$

I am unsure how to proceed from here to get a closed form for $I$.

Тyma Gaidash
  • 12,081

3 Answers3

4

Apply binomial expansion to express

$$\sin^{2n+1}x=\left(\frac{e^{i x}-e^{-i x}}{2i}\right)^{2n+1} =\frac{1}{2^{2n}} \sum_{k=0}^{n} \begin{pmatrix}2n+1\\k\end{pmatrix}(-1)^{n+k} \sin(2n+1-2k)x $$ Then, note that $\int_{0}^{\infty}\frac{\sin(a{x})}{x}dx =\frac\pi2 $ and integrate to obtain

$$I_n= \int_{0}^{\infty}\frac{\sin^{2n+1}{x}}{x}dx = \frac{\pi}{2^{2n+1}} \sum_{k=0}^{n} \begin{pmatrix}2n+1\\k\end{pmatrix}(-1)^{n+k} $$ Listed below are a few sample results of $I_n$ $$I_1=\frac\pi4,\>\>\> I_2=\frac{3\pi}{16},\>\>\> I_3=\frac{5\pi}{32},\>\>\> I_4=\frac{35\pi}{256},\>\>\> I_5=\frac{63\pi}{512},\>\>\>\cdots $$

Quanto
  • 97,352
4

The most concise closed-form expression is this:

$$\int_{0}^{\infty} \frac{\sin^{2n+1}(x)}{x} dx = \frac{1}{2^{2n}}\binom{2n}{n}\frac{\pi}{2}$$

This is how you can conclude this:

In An Atlas of functions there is a formula of how to expand powers of sine:

$$sin^{r}(x) = \begin{cases} \displaystyle \frac{(-1)^n}{2^{r-1}} \sum_{j=0}^{n-1} (-1)^j \binom{r}{j} \cos\left[(r-2j)x\right] + \frac{1}{2^n} \binom{r}{n} &\quad \textrm{if} \quad r=2n \\ \displaystyle \frac{(-1)^n}{2^{r-1}}\sum_{j=0}^{n} (-1)^j \binom{r}{j} \sin\left[(r-2j)x\right] & \quad \textrm{if} \quad r=2n+1 \end{cases} $$

To prove this note:

\begin{align*} (2i\sin(x))^{r} = (e^{ix}-e^{-ix})^{r} = & \sum_{j=0}^{r} \binom{r}{j} (-1)^{r-j}e^{ixj}e^{-ix(r-j)} =\sum_{j=0}^{r} \binom{r}{j} (-1)^{r-j}e^{-ix(r-2j)} \\ =& \sum_{j=0}^{r} \binom{r}{j}(-1)^{r-j}\left[\cos(x(r-2j))-i\sin(x(r-2j))\right] \end{align*}

Now suppose that $r=2n+1$, then

\begin{align*} 2^{2n}(-1)^{n}(2i)\sin^{2n+1}(x) = &\sum_{j=0}^{2n+1} \binom{2n+1}{j}(-1)^{2n+1-j} \left[\cos(x(2n+1-2j))-i\sin(x(2n+1-2j))\right]\\ =& \sum_{j=0}^{n} \binom{2n+1}{j}(-1)^{2n+1-j} \left[\cos(x(2n+1-2j))-i\sin(x(2n+1-2j))\right]\\ +& \sum_{j=n+1}^{2n+1} \binom{2n+1}{j}(-1)^{2n+1-j}\left[\cos(x(2n+1-2j))-i\sin(x(2n+1-2j))\right]\\ =& \sum_{j=0}^{n} \binom{2n+1}{j}(-1)^{j}\left[-\cos(x(2n+1-2j))+i\sin(x(2n+1-2j))\right]\\ +&\sum_{j=n+1}^{2n+1} \binom{2n+1}{2n+1-j}(-1)^{j}\left[-\cos(x(2n+1-2j))+i\sin(x(2n+1-2j))\right] \end{align*}

Lets $k=2n+1-j$ then

\begin{align*} &\sum_{j=n+1}^{2n+1} \binom{2n+1}{2n+1-j}(-1)^{j}\left[-\cos(x(2n+1-2j))+i\sin(x(2n+1-2j))\right]\\ =& \sum_{k=0}^{n} \binom{2n+1}{k}(-1)^{k}\left[\cos(-x(2n+1-2k))-i\sin(-x(2n+1-2k))\right] \end{align*}

Given that for $k=0,...,n$

\begin{align*} \cos(-x(2n+1-2k))-\cos(x(2n+1-2k))&=&0\\ i\sin(x(2n+1-2k))-i\sin(-x(2n+1-2k))& =& 2i\sin(x(2n+1-2k)) \end{align*}

\begin{equation} \therefore sin^{2n+1}(x) =\frac{(-1)^n}{2^{2n}}\sum_{j=0}^{n} (-1)^j \binom{2n+1}{j} \sin\left[(2n+1-2j)x\right] \tag{1} \end{equation}

From complex analysis we know that:

\begin{equation} \int_{0}^{\infty} \frac{\sin(x)}{x} = \frac{\pi}{2} \tag{2} \end{equation}

From combinatorics we kwnow that that: \begin{equation} \sum _{j=0}^{k} (-1)^j\binom{m}{j} = (-1)^k\binom{m-1}{k} \tag{3} \end{equation}

Putting all together:

\begin{align*} \int_{0}^{\infty} \frac{\sin^{2n+1}(x)}{x} dx =& \int_{0}^{\infty} \frac{(-1)^n}{2^{2n}}\sum_{j=0}^{n} (-1)^j \binom{2n+1}{j} \frac{\sin\left[(2n+1-2j)x\right]}{x} dx \quad \textrm{from (1)}\\ =& \frac{(-1)^n}{2^{2n}}\sum_{j=0}^{n} (-1)^j \binom{2n+1}{j}\int_{0}^{\infty} \frac{\sin\left[(2n+1-2j)x\right]}{x} dx \end{align*}

If $u= (2n+1-2j)x $ then $ \displaystyle dx = \frac{1}{2n+1-2j} du$

\begin{align*} \int_{0}^{\infty} \frac{\sin^{2n+1}(x)}{x} dx =& \frac{(-1)^n}{2^{2n}}\sum_{j=0}^{n} (-1)^j \binom{2n+1}{j}\int_{0}^{\infty} \frac{\sin\left[(2n+1-2j)x\right]}{x} dx\\ =& \frac{(-1)^n}{2^{2n}}\sum_{j=0}^{n} (-1)^j \binom{2n+1}{j}\int_{0}^{\infty} \frac{\sin(u)}{u} du\\ =& \frac{(-1)^n}{2^{2n}}\sum_{j=0}^{n} (-1)^j \binom{2n+1}{j} \frac{\pi}{2} \quad \textrm{from (2)}\\ =& \frac{(-1)^n}{2^{2n}} (-1)^{n} \binom{2n}{n}\frac{\pi}{2} \quad \textrm{from (3)}\\ =& \frac{1}{2^{2n}}\binom{2n}{n}\frac{\pi}{2} \end{align*}

Bertrand87
  • 2,171
0

Another short formula.

Starting from @Quanto'answer

$$I_n= \int_{0}^{\infty}\frac{\sin^{2n+1}(x)}{x}dx = \frac{\pi}{2^{2n+1}}\sum_{k=0}^{n} (-1)^{k+n} \binom{2 n+1}{k}$$ $$\sum_{k=0}^{n} (-1)^{k+n} \binom{2 n+1}{k}=\frac{n+1}{2n+1}\binom{2 n+1}{n+1}=\frac{2^{2 n}\, \Gamma \left(n+\frac{1}{2}\right)}{\sqrt{\pi }\,\, \Gamma (n+1)}$$ $$I_n=\frac{\sqrt \pi} 2\,\frac{\Gamma \left(n+\frac{1}{2}\right)}{\Gamma (n+1)}$$ When $n$ starts to be large $$I_n=\frac 12\sqrt{\frac{\pi}{n}}\Bigg[1-\frac{1}{8 n}+\frac{1}{128 n^2}+\frac{5}{1024 n^3}-\frac{21}{32768 n^4}+O\left(\frac{1}{n^5}\right) \Bigg]$$