For your solution
$ 2 \cos \left(\frac{\pi }{11}\right)=\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2-2 \cos \left(\frac{\pi }{11}\right)}}}}} $
I have add it (with your name) to Page 3 of my Notebook:
http://eslpower.org/Notebook.htm
I found the same result independently on July,2021.
Here is my method:
Since $(2^5+1) \bmod 33=0$, we have
$ 2 \cos \left(\frac{\pi }{33}\right)=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-2 \cos \left(\frac{\pi }{33}\right)}}}}} $
and
$ 2 \cos \left(\frac{3\pi }{33}\right)=\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2-2 \cos \left(\frac{3\pi }{33}\right)}}}}} $
then we have
$ 2 \cos \left(\frac{\pi }{11}\right)=\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2-2 \cos \left(\frac{\pi }{11}\right)}}}}} $
For $ 2 \cos \left(\frac{\pi }{13}\right) $, we may use the same method:
Since $(2^6+1) \bmod 13=0$, we have
$ 2 \cos \left(\frac{\pi }{65}\right)=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-2 \cos \left(\frac{\pi }{65}\right)}}}}}} $
and
$ 2 \cos \left(\frac{5 \pi }{65}\right)=\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2-2 \cos \left(\frac{5 \pi }{65}\right)}}}}}} $
then we have
$ 2 \cos \left(\frac{\pi }{13}\right)=\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{2-\sqrt{2+\sqrt{2-2 \cos \left(\frac{\pi }{13}\right)}}}}}} $
For more of my new results, I have post as my answers to your another question:
https://math.stackexchange.com/a/4232525/954936