I want to find radical representation of $\cos\dfrac {2\pi}{11}$.
My attempt
Consider the 11th root of unity:
$$ \begin{aligned} ω&= e^{2πi/11}\\ ω^n&=ω^{n\bmod 11} \end{aligned} $$
From Euler's formula:
$$ \begin{aligned} \cos\frac{2\pi}{11}&=\frac{1}{2}\left(ω^1+ω^{10}\right)\\ \cos\frac{4\pi}{11}&=\frac{1}{2}\left(ω^2+ω^9\right)\\ \cos\frac{6\pi}{11}&=\frac{1}{2}\left(ω^3+ω^8\right)\\ \cos\frac{8\pi}{11}&=\frac{1}{2}\left(ω^4+ω^7\right)\\ \cos\frac{10\pi}{11}&=\frac{1}{2}\left(ω^5+ω^6\right)\\ \end{aligned} $$
Define
$$ω^{a,b,c, \cdots} = ω^a + ω^b + ω^c + \cdots$$
Let
$$ \begin{aligned} σ_{0} &=ω^{\{1,2,3,4,5,6,7,8,9,10\}}=-1 \end{aligned} $$
and
$$ \begin{aligned} σ_{1}&=ω^{\{1,10\}}\\ σ_{2}&=ω^{\{2,9\}}\\ σ_{3}&=ω^{\{3,8\}}\\ σ_{4}&=ω^{\{4,7\}}\\ σ_{5}&=ω^{\{5,6\}}\\ \end{aligned} $$
With
$$ \begin{aligned} σ_1+σ_2+σ_3+σ_4+σ_5&=σ_0 \\ \sum_{\rm{cycle}}{σ_i σ_j}&=4σ_0 \\ \sum_{\rm{cycle}}{σ_i σ_j σ_k}&=10+7σ_0 \\ \sum_{\rm{cycle}}{σ_i σ_j σ_k σ_m}&=10+7σ_0 \\ σ_1 σ_2 σ_3 σ_4 σ_5&=2+3σ_0 \\ \end{aligned} $$
According to Vieta's formulas, $(σ_{1},σ_{2},σ_{3},σ_{4},σ_{5})$ is the root of $x^5+x^4-4 x^3-3 x^2+3 x+1$.
This is a solvable quintic equation, but I don't know how to solve the radical.
Factor[x^5 + x^4 - 4 x^3 - 3 x^2 + 3 x + 1, Extension -> Cos[1/5 ArcCos[1/22 Sqrt[1/22 (5523 + 2225 Sqrt[5])]]]]
– Dmitry Ezhov Jun 09 '22 at 11:22