$$x^5+x^4-12x^3-21x^2+x+5=0$$ I think it can be solved by trigonometric ways, but how?
-
Wolfram Alpha can't find any nice exact form for any of the roots. – hmakholm left over Monica Oct 24 '14 at 14:44
-
4The Galois group (over $\mathbb{Q})$ is $\mathbb{Z}_5$, so it is solvable with radicals. – Travis Willse Oct 24 '14 at 14:46
-
What makes you think it is solvable by trigonometry ? – Oct 24 '14 at 14:47
-
How do you know that, @Travis ? – Timbuc Oct 24 '14 at 14:48
-
@Timbuc, the Maple command galois(). – Travis Willse Oct 24 '14 at 14:49
-
2Just out of curiosity, where did you get this equation? – Sawarnik Oct 24 '14 at 14:52
-
I've had occasion to recommend D. S. Dummit's 1991 paper Solving Solvable Quintics. – hardmath Oct 30 '14 at 23:51
5 Answers
Inspecting the discriminant and the small primes where the polynomial splits suggests that its splitting field is the class field of modulus $31$ corresponding to the subgroup $\{\pm 1, \pm 5, \pm 6\}$ of $(\Bbb Z/31\Bbb Z)/\{\pm 1\}$.
Which means that the splitting field is $\Bbb Q\left(2\left(\cos\frac{2\pi}{31}+\cos\frac{10\pi}{31}+\cos\frac{12\pi}{31}\right)\right)$.
Then I computed the minimal polynomial of this quantity (pure curiosity), and ended up on your polynomial exactly.
So the roots are $2\left(\cos\frac{2\pi}{31}+\cos\frac{10\pi}{31}+\cos\frac{12\pi}{31}\right)$, and its conjugates $$2\left(\cos\frac{4\pi}{31}+\cos\frac{20\pi}{31}+\cos\frac{24\pi}{31}\right) , \\ 2\left(\cos\frac{8\pi}{31}+\cos\frac{22\pi}{31}+\cos\frac{14\pi}{31}\right), \\ 2\left(\cos\frac{16\pi}{31}+\cos\frac{18\pi}{31}+\cos\frac{28\pi}{31}\right),\\ 2\left(\cos\frac{30\pi}{31}+\cos\frac{26\pi}{31}+\cos\frac{6\pi}{31}\right).$$
I have no idea on how to guess this without the heavy machinery.

- 27,005

- 50,180
-
mercio, just placed a new question on this, November 2016, on finding more examples where the roots can be written as sums of roots of unity. http://math.stackexchange.com/questions/1996552/any-more-cyclic-quintics – Will Jagy Nov 02 '16 at 19:20
-
placed a short version, for primes up to $881,$ by the method of Gauss, as an answer here. – Will Jagy Nov 11 '16 at 20:04
This is an old question, but should be interesting to answer. If you want an aesthetic version, then the solution to,
$$x^5 + x^4 - 12x^3 - 21x^2 + x + 5 = 0$$
is given by,
$$x = \frac{1}{5}\left(-1+z_1^{1/5}+z_2^{1/5}+z_3^{1/5}+z_4^{1/5}\right)$$
and the $z_i$ are the roots of the quartic,
$$z^4 + 12679 z^3 + 78678031 z^2 + 362989005529 z + 31^{10} = 0$$
Notice how the quartic has a constant term that is a fifth power. This factors over the extension $\sqrt{5}$. So alternatively,
$$x = \frac{1}{5}\left(\beta_0-1+\frac{31}{\beta_0}+\frac{31}{\alpha}+\alpha\right)$$
where,
$$\alpha = \left(\tfrac{31}{4}\right)^{1/5}\left(-409-125\sqrt{5}+5\sqrt{-10(925-409\sqrt{5})}\right)^{1/5}\tag1$$
$$\beta_0 = \left(\tfrac{31}{4}\right)^{1/5}\left(-409+125\sqrt{5}+5\sqrt{-10(925+409\sqrt{5})}\right)^{1/5}\tag2$$
Added:
Israel's Maple answer can be simplified. The five roots $x_k$ for $k=0,1,2,3,4$ are,
$$x_k = \frac{1}{5}\left(\frac{1}{\beta_k^{-1}}-\frac{1}{\beta_k^0}+\frac{31}{\beta_k^1}+\frac{31a}{\beta_k^2}+\frac{31b}{\beta_k^3} \right)$$
where,
$$a=\frac{\beta_0^2}{\alpha}=\tfrac{1}{4}\left(11+5\sqrt{5}+\sqrt{-10(25-11\sqrt{5})}\right)$$
$$b=\frac{\alpha\,\beta_0^3}{31}=\tfrac{1}{4}\left(-1-5\sqrt{5}+\sqrt{-10(1525-\sqrt{5})}\right)$$
$$\beta_k = e^{2\pi\,i\,k/5}\,\left(31ab\right)^{1/5}\tag3$$
So it turns out that the root $(2)$ can be factored as $(3)$. Maple's answer also has the advantage that only one fifth root extraction of a complex number is needed.

- 54,565
-
1@OscarLanzi: I think you mean $$t^4+\frac{409\sqrt{31},t^3+2641t^2+409\sqrt{31},t}{31^2}+1 = 0$$ – Tito Piezas III Jul 14 '18 at 17:18
-
Maple gives one of the roots as $$ 1/20\,\sqrt [5]{31}{4}^{4/5}\sqrt [5]{{\frac {125\,\sqrt {5}\sqrt {-65 -22\,\sqrt {5}}-409\,\sqrt {-65-22\,\sqrt {5}}-1575\,\sqrt {5}-3725}{ \sqrt {-65-22\,\sqrt {5}}}}}+{\frac { \left( 1577\,{\frac {\sqrt {5}}{ \sqrt {-65-22\,\sqrt {5}}}}-65\,\sqrt {5}+181\,\sqrt {-65-22\,\sqrt {5 }}-13 \right) {31}^{2/5}{4}^{3/5}}{260\, \left( {\frac {125\,\sqrt {5} \sqrt {-65-22\,\sqrt {5}}-409\,\sqrt {-65-22\,\sqrt {5}}-1575\,\sqrt { 5}-3725}{\sqrt {-65-22\,\sqrt {5}}}} \right) ^{3/5}}}+{\frac { \left( 437\,{\frac {\sqrt {5}}{\sqrt {-65-22\,\sqrt {5}}}}+65\,\sqrt {5}+11\, \sqrt {-65-22\,\sqrt {5}}+143 \right) {31}^{3/5}{4}^{2/5}}{260\, \left( {\frac {125\,\sqrt {5}\sqrt {-65-22\,\sqrt {5}}-409\,\sqrt {- 65-22\,\sqrt {5}}-1575\,\sqrt {5}-3725}{\sqrt {-65-22\,\sqrt {5}}}} \right) ^{2/5}}}+1/5\,{\frac {{31}^{4/5}\sqrt [5]{4}}{\sqrt [5]{{ \frac {125\,\sqrt {5}\sqrt {-65-22\,\sqrt {5}}-409\,\sqrt {-65-22\, \sqrt {5}}-1575\,\sqrt {5}-3725}{\sqrt {-65-22\,\sqrt {5}}}}}}}-1/5 $$ (the others are similar expressions)

- 448,999
-
12
-
1
-
Well, since we now have one of the roots, can we not use the quartic equation to find the other 4 ? :D – Nick Oct 24 '14 at 17:54
-
What makes me think its solvable by trigonomerty is the one who asks for this says so. He says its a trigonometric exercise :). I think its like putting x=a.tany or else. – Recep Oct 25 '14 at 04:55
-
@RobertIsrael: I gave an improved, simplified version of Maple's answer below. (It turns out the quartic root can be factored.) – Tito Piezas III Jun 26 '15 at 08:01
For primes $p \equiv 1 \pmod {10},$ the method of Gauss gives the roots of a certain quintic as sums of $\zeta^n,$ where $\zeta = e^{2 \pi i/p}.$ In turn, the collection of exponents $n$ is of the form $w^k.$ Example, for $p = 31$ the exponents are $6^k$ for $0 \leq k \leq 5.$ Here are the first 35 such polynomials and the exponents for one of the roots. Compare with the list for $p = 11, 31, 41, 61, 71$ in https://en.wikipedia.org/wiki/Quintic_function#Other_solvable_quintics
x^5 + x^4 - 4 x^3 - 3 x^2 + 3 x + 1 prime 11 zeta exponents 10^k
x^5 + x^4 - 12 x^3 - 21 x^2 + 1 x + 5 prime 31 zeta exponents 6^k
x^5 + x^4 - 16 x^3 + 5 x^2 + 21 x - 9 prime 41 zeta exponents 3^k
x^5 + x^4 - 24 x^3 - 17 x^2 + 41 x - 13 prime 61 zeta exponents 21^k
x^5 + x^4 - 28 x^3 + 37 x^2 + 25 x + 1 prime 71 zeta exponents 23^k
x^5 + x^4 - 40 x^3 + 93 x^2 - 21 x - 17 prime 101 zeta exponents 32^k
x^5 + x^4 - 52 x^3 - 89 x^2 + 109 x + 193 prime 131 zeta exponents 18^k
x^5 + x^4 - 60 x^3 - 12 x^2 + 784 x + 128 prime 151 zeta exponents 23^k
x^5 + x^4 - 72 x^3 - 123 x^2 + 223 x - 49 prime 181 zeta exponents 17^k
x^5 + x^4 - 76 x^3 - 359 x^2 - 437 x - 155 prime 191 zeta exponents 11^k
x^5 + x^4 - 84 x^3 - 59 x^2 + 1661 x + 269 prime 211 zeta exponents 26^k
x^5 + x^4 - 96 x^3 - 212 x^2 + 1232 x + 512 prime 241 zeta exponents 11^k
x^5 + x^4 - 100 x^3 - 20 x^2 + 1504 x + 1024 prime 251 zeta exponents 2^k
x^5 + x^4 - 108 x^3 - 401 x^2 - 13 x + 845 prime 271 zeta exponents 12^k
x^5 + x^4 - 112 x^3 - 191 x^2 + 2257 x + 967 prime 281 zeta exponents 6^k
x^5 + x^4 - 124 x^3 + 535 x^2 - 413 x - 539 prime 311 zeta exponents 11^k
x^5 + x^4 - 132 x^3 - 887 x^2 - 1843 x - 1027 prime 331 zeta exponents 13^k
x^5 + x^4 - 160 x^3 + 369 x^2 + 879 x - 29 prime 401 zeta exponents 26^k
x^5 + x^4 - 168 x^3 + 219 x^2 + 3853 x - 3517 prime 421 zeta exponents 32^k
x^5 + x^4 - 184 x^3 - 129 x^2 + 4551 x + 5419 prime 461 zeta exponents 13^k
x^5 + x^4 - 196 x^3 + 59 x^2 + 2019 x + 1377 prime 491 zeta exponents 32^k
x^5 + x^4 - 208 x^3 - 771 x^2 + 4143 x + 2083 prime 521 zeta exponents 24^k
x^5 + x^4 - 216 x^3 + 1147 x^2 - 805 x - 2629 prime 541 zeta exponents 11^k
x^5 + x^4 - 228 x^3 + 868 x^2 + 3056 x - 7552 prime 571 zeta exponents 2^k
x^5 + x^4 - 240 x^3 + 1755 x^2 - 3731 x + 2399 prime 601 zeta exponents 17^k
x^5 + x^4 - 252 x^3 + 2095 x^2 - 5785 x + 5069 prime 631 zeta exponents 24^k
x^5 + x^4 - 256 x^3 - 564 x^2 + 5328 x - 5120 prime 641 zeta exponents 21^k
x^5 + x^4 - 264 x^3 - 185 x^2 + 16837 x + 4851 prime 661 zeta exponents 32^k
x^5 + x^4 - 276 x^3 - 1299 x^2 + 5329 x + 15581 prime 691 zeta exponents 11^k
x^5 + x^4 - 280 x^3 + 2047 x^2 - 3791 x + 1699 prime 701 zeta exponents 23^k
x^5 + x^4 - 300 x^3 - 2313 x^2 - 3761 x - 571 prime 751 zeta exponents 11^k
x^5 + x^4 - 304 x^3 + 2831 x^2 - 8925 x + 8775 prime 761 zeta exponents 3^k
x^5 + x^4 - 324 x^3 - 3471 x^2 - 12431 x - 13603 prime 811 zeta exponents 12^k
x^5 + x^4 - 328 x^3 - 1215 x^2 + 3573 x + 2179 prime 821 zeta exponents 32^k
x^5 + x^4 - 352 x^3 - 2361 x^2 + 4257 x + 9967 prime 881 zeta exponents 29^k

- 139,541
This is based on langrange resolvent,
our polynomial $x^5+x^4-12x^3-21x^2+x+5=0$ have its roots are the sums of $31^{th}$ roots of unity. Let $ζ^k$ be the $31^{th}$ roots of unity so the roots are $$x_1=ζ^{1}+ζ^{26}+ζ^{25} + ζ^{30}+ζ^{5}+ζ^{6}$$ $$x_2=ζ^{3}+ζ^{16}+ζ^{13} + ζ^{28}+ζ^{15}+ζ^{18}$$ $$x_3=ζ^{9}+ζ^{17}+ζ^{8} + ζ^{22}+ζ^{14}+ζ^{23}$$ $$x_4=ζ^{27}+ζ^{20}+ζ^{24} + ζ^{4}+ζ^{11}+ζ^{7}$$ $$x_5=ζ^{19}+ζ^{29}+ζ^{10} + ζ^{12}+ζ^{2}+ζ^{21}$$ and note that $ζ^{k}+ζ^{31-k}=2\cos\frac{2k\pi}{31}$ to get the expression in terms of trigonometric function. These roots also expressible via radicals, consider the roots are in the form of $$x_1=-1+r_1+r_2+r_3+r_4$$ $$x_2=-1+ρ^{4}r_1+ρ^{3}r_2+ρ^{2}r_3+ρ^{1}r_4$$ $$x_3=-1+ρ^{3}r_1+ρ^{1}r_2+ρ^{4}r_3+ρ^{2}r_4$$ $$x_4=-1+ρ^{2}r_1+ρ^{4}r_2+ρ^{1}r_3+ρ^{3}r_4$$ $$x_5=-1+ρ^{1}r_1+ρ^{2}r_2+ρ^{3}r_3+ρ^{4}r_4$$ where $ρ^k$ is the primitive fifth roots of unity, applying some DFT DFT, the value of $r_i$ can be found as $$-1=x_1+x_2+x_3+x_4+x_5$$ $$r_1=x_1+ρ^{1}x_2+ρ^{2}x_3+ρ^{3}x_4+ρ^{4}x_5$$ $$r_2=x_1+ρ^{2}x_2+ρ^{1}x_3+ρ^{4}x_4+ρ^{3}x_5$$ $$r_3=x_1+ρ^{3}x_2+ρ^{4}x_3+ρ^{1}x_4+ρ^{2}x_5$$ $$r_4=x_1+ρ^{4}x_2+ρ^{3}x_3+ρ^{2}x_4+ρ^{1}x_5$$ and of the $r_i$ is the fifth root of some quartic, and it radicand have the form being similar to fifth roots of unity. Now, our mission is to find the radicand inside $r_i$, which it will be in the form of
$$r^5_1=l_0+ρ^{1}l_1+ρ^{2}l_2+ρ^{3}l_3+ρ^{4}l_4$$ $$r^5_2=l_0+ρ^{1}l_3+ρ^{2}l_1+ρ^{3}l_4+ρ^{4}l_2$$ $$r^5_3=l_0+ρ^{1}l_2+ρ^{2}l_4+ρ^{3}l_1+ρ^{4}l_3$$ $$r^5_4=l_0+ρ^{1}l_4+ρ^{2}l_3+ρ^{3}l_2+ρ^{4}l_1$$ and for this polynomial, my calculation shows that all the $l_i$ are rational, these values are hard to find for me (especially at ordering its roots), i came up with $$l_0=-2536$$ $$l_1=750$$ $$l_2=-490$$ $$l_3=3695$$ $$l_4=-1420$$ using the relation $ρ^{1}+ρ^{2}+ρ^{3}+ρ^{4}=-1$, the $l_i$ are reducible removing the $l_0$, by subtracting each $l_i$ with $l_0$ yields all coeficients of fifth roots of unity divisible by $31$ $$l_0-l_0=0$$ $$l_1-l_0=106\times31$$ $$l_2-l_0=66\times31$$ $$l_3-l_0=201\times31$$ $$l_4-l_0=36\times31$$ so $$r_1=\sqrt[5]{31\left(106ρ^{1}+66ρ^{2}+201ρ^{3}+36ρ^{4}\right)}$$ $$r_2=\sqrt[5]{31\left(201ρ^{1}+106ρ^{2}+36ρ^{3}+66ρ^{4}\right)}$$ $$r_3=\sqrt[5]{31\left(66ρ^{1}+36ρ^{2}+106ρ^{3}+201ρ^{4}\right)}$$ $$r_4=\sqrt[5]{31\left(36ρ^{1}+201ρ^{2}+66ρ^{3}+106ρ^{4}\right)}$$ the radical values can be found using another radical expression of the fifth roots of unity $$ρ^{k}=\cos\frac{2k\pi}{5}\pm i\sin\frac{2k\pi}{5}$$ and the nested radical from the sine function values can be simplified using the relation $$2i\left(n_1\sin\frac{2\pi}{5}+n_1\sin\frac{4\pi}{5}\right)=\sqrt{m_0+2\left(m_1\cos\frac{2\pi}{5}+m_2\cos\frac{4\pi}{5}\right)}$$ where $$m_0=-2(n^2_1+n^2_2) , m_1=n^2_1-2n_1n_2 , m_1=n^2_2+2n_1n_2$$
hope these are helps

- 99