Question
I would like to derive the entropy of Archimedean parametric copulas (Clayton, Frank, or Gumbel), focusing here on the Clayton copula. Link to similar question on the t-copula.
The bivariate copula function, $C$, for the Clayton copula, with transformed marginals $u$ and $v$, and dependence parameter $\theta\in \mathbb{R}_{\geq 0}$, is
$$ C(u, v) = \bigg[ u^{-\theta} + v^{-\theta} -1 \bigg]^{-1/\theta} $$
Its copula density is the second mixed partial derivative of $C(u,v)$:
\begin{align} c\left(u,v ; \theta\right) = (1+\theta)(u \cdot v)^{-1-\theta}(u^{-\theta}+v^{-\theta}-1)^{-\frac{1}{\theta}-2} \end{align}
The differential entropy of a univariate variable's pdf, $f(x)$, is typically $$H(X)=-\int_{-\infty} ^{\infty} f(x) \ln f(x) dx$$
while any copula entropy can be estimated as
$$H(c(u,v))=-\int_{[0,1]^2} c(u,v) \ln c(u,v) \hspace{1mm} du \hspace{1mm} dv $$
How can we derive a closed-form analytical solution for the entropy of the Clayton copula density $c(u,v)$?
First attempt
\begin{align} H(c(u,v)) =& -\iint_{[0,1]^2} c\left(u, v ; \theta\right) \ln c\left(u, v ; \theta\right) \mathrm{d}u \, \mathrm{d}v \\ = & -\iint_{[0,1]^2} (1+\theta)\left(u v\right)^{-1-\theta}\left(u^{-\theta}+v^{-\theta}-1\right)^{-\frac{1}{\theta}-2}\\ \times & \ln\left[(1+\theta)\left(u v\right)^{-1-\theta}\left(u^{-\theta}+v^{-\theta}-1\right)^{-\frac{1}{\theta}-2}\right] \mathrm{d}u \, \mathrm{d}v \\ = & -(1+\theta) \iint_{[0,1]^2} \left(u v\right)^{-1-\theta}\left(u^{-\theta}+v^{-\theta}-1\right)^{-\frac{1}{\theta}-2}\\ \times & \left[\ln(1+\theta) - (1+\theta)\ln\left(u v\right) -\left(\frac{1}{\theta}+2\right)\ln\left(u^{-\theta}+v^{-\theta}-1\right)\right] \mathrm{d}u \, \mathrm{d}v \\ = & -(1+\theta) \iint_{[0,1]^2} \bigg[\ln(1+\theta) c - (1+\theta)\ln\left(u v\right) c -\left(\frac{1}{\theta}+2\right)\ln\left(u^{-\theta}+v^{-\theta}-1\right) c \bigg] \ \mathrm{d}u \, \mathrm{d}v \\ = & -(1+\theta) \ln(1+\theta) \iint_{[0,1]^2} c \ \mathrm{d}u \, \mathrm{d}v + (1+\theta)^2\iint_{[0,1]^2} c \ln\left(u v\right) \ \mathrm{d}u \, \mathrm{d}v \\ + & (1+\theta) \left(\frac{1}{\theta}+2\right) \iint_{[0,1]^2} c \ln\left(u^{-\theta}+v^{-\theta}-1\right) \ \mathrm{d}u \, \mathrm{d}v \\ \stackrel{\dagger}{=} & -(1+\theta) \ln(1+\theta) \int_0^1 c \bigg|_{v=0}^{v=1} \ \mathrm{d}u + (1+\theta)^2 \int_0^1 c \ln\left(u v\right) \bigg|_{v=0}^{v=1} \ \mathrm{d}u\\ + & (1+\theta) \left(\frac{1}{\theta}+2\right) \int_0^1 c \ln\left(u^{-\theta}+v^{-\theta}-1\right) \bigg|_{v=0}^{v=1} \ \mathrm{d}u \\ = & ? \end{align}
where $c = \left(u v\right)^{-1-\theta}\left(u^{-\theta}+v^{-\theta}-1\right)^{-\frac{1}{\theta}-2} $, and $\dagger$ is due to treating the double integrals as an iterated integral,
$$\iint_{[0,1]^2} c(u,v) \ \mathrm{d}u \, \mathrm{d}v = \int_0^1 c(u,v) \bigg|_{v=0}^{v=1} \mathrm{d}u $$
Why do I think an analytical solution of copula entropy can be found? Because there is one for the entropy of the Normal distribution's pdf, derived here.