2020 11.26: I finished the derivation but haven't posted it here. I leave this open so that those willing to try their own version can if they want
Question
How can we derive a closed-form analytical solution for $\mathbb{E}\left[ -\log c(u,v)\right] $?
$c(u,v)$ is the bivariate copula density for Student's $t$-copula, whose degrees of freedom is $\nu$ and dependence parameter is $\rho\in (-1,1)$:
\begin{aligned} c(u,v) &= \frac{1}{2\pi \sqrt{1-\rho^2}} \frac{1}{dt(x_1; \nu) dt(x_2; \nu)} \Bigg(1+\frac{x_1^2 + x_2^2 -2\rho x_1 x_2}{\nu (1-\rho^2)} \Bigg)^{-\frac{\nu +2}{2}} \end{aligned}
where $$dt(x_i; \nu) = \frac{\Gamma \bigg(\frac{\nu+1}{2}\bigg) }{\Gamma (\frac{\nu}{2}) \sqrt{\pi\nu}} \Bigg( 1+\frac{x_i^2}{\nu} \Bigg)^{-\frac{\nu+1}{2} } \enspace, i=1,2 $$
or equivalently, $$\displaystyle dt(x_i;\nu) = \frac{1}{\sqrt{\nu}B \left(\frac{1}{2}, \frac{\nu}{2} \right)} \Bigg( 1+\frac{x_i^2}{\nu} \Bigg)^{-\frac{\nu+1}{2} }, i=1,2 $$ where $\Gamma(\cdot)$ is the gamma function, and $B(\cdot)$ is the beta function.
First Attempt
\begin{align} h(c(u,v)) &= -\int_{[0,1]^2} c(u,v) \ln c(u,v) \hspace{1mm} du \hspace{1mm} dv \\ &= \mathbb{E}\left[ -\log c(u,v)\right] \\ &= \mathbb{E}\left[ -\log \frac{1}{2\pi \sqrt{1-\rho^2}} \frac{1}{dt(x_1; \nu) dt(x_2; \nu)} \left(1+\frac{x_1^2 + x_2^2 -2\rho x_1 x_2}{\nu (1-\rho^2)} \right)^{-\frac{\nu +2}{2}}\right] \\ &= -\mathbb{E}\left[\log \frac{1}{2\pi \sqrt{1-\rho^2}} + \log \frac{1}{dt(x_1; \nu) dt(x_2; \nu)} +\log \left(1+\frac{x_1^2 + x_2^2 -2\rho x_1 x_2}{\nu (1-\rho^2)} \right)^{-\frac{\nu +2}{2}}\right] \\ &= -\mathbb{E}\left[-\log \left(2\pi \sqrt{1-\rho^2}\right) + \log \frac{1}{dt(x_1; \nu) dt(x_2; \nu)} -\left(\frac{\nu +2}{2}\right) \log \left(1+\frac{x_1^2 + x_2^2 -2\rho x_1 x_2}{\nu (1-\rho^2)} \right)\right] \\ &= \log \left(2\pi \sqrt{1-\rho^2}\right) -\mathbb{E}\left[\log \frac{1}{dt(x_1; \nu) dt(x_2; \nu)} -\left(\frac{\nu +2}{2}\right) \log \left(1+\frac{x_1^2 + x_2^2 -2\rho x_1 x_2}{\nu (1-\rho^2)} \right)\right] \\ & = \dots ? \end{align}
Hint
Why do I think an analytical solution of copula entropy can be found? Because there is one for the entropy of the Normal distribution's pdf, which I copy and paste now from its derivation here: \begin{align}\label{equation:hN} h(X_\mathrm{Gauss}) = &-\int_{-\infty}^{\infty} \left(2\pi \sigma^2\right)^{-\frac{1}{2}} e^{-(x-\mu)^2 / 2\sigma^2} \ln\left[ \left(2\pi \sigma^2\right)^{-\frac{1}{2}} e^{-(x-\mu)^2 / 2\sigma^2} \right] \mathrm{d} x\\ = &\frac{1}{2} \ln(2\pi \sigma^2) \int_{-\infty}^{\infty} (2\pi \sigma^2)^{-\frac{1}{2}} e^{-(x-\mu)^2 / 2\sigma^2} \mathrm{d} x\\ &+ \frac{1}{2\sigma^2} \left(2\pi \sigma^2\right)^{-\frac{1}{2}} (x-\mu)^2 e^{-(x-\mu)^2 / 2\sigma^2} \mathrm{d} x\\ =& \frac{1}{2} \ln (2\pi\sigma^2) + \frac{1}{2}\\ =& \frac12\ln(2\pi\sigma^2) + \frac12\ln e\\ =& \frac12\left(\ln(2\pi\sigma^2) + \ln e\right)\\ =& \frac{1}{2} \ln (2\pi e \sigma^2) \end{align}