Evaluating $$\oint_C \frac{z^{\alpha-1}}{1+z} dz$$ we see that there is a branch cut along the positive $x-$axis and a pole at $z=-1$.
Take $C$ to be a keyhole contour consisting of a segment from $\epsilon$ to $R$, a circle of radius $R$, a segment from $R$ to $\epsilon$ and a small circle of radius $\epsilon$ surrounding the origin.
The result is:
$$\int_0^\infty \frac{ x^{\alpha-1}}{1+x} = \frac{\pi}{\sin \pi \alpha} \quad \text{when } 0<\alpha<1.$$
With the substitution $y^{1/2} = x$, our integral becomes
$$\bbox[5px, border: 1pt solid blue]{\int_0^\infty \frac{x^{1/3}}{1+x^2} dx = \frac{1}{2} \int_0^\infty \frac{y^{-1/3}}{1+y} dy = \frac{\pi}{2\sin \frac{2\pi}{3}}=\frac{\pi}{\sqrt{3}}.}$$
UPDATE:
In response to J.G.'s question:
The residue at $z=-1$ is $$b=\text{Res}_{z=-1} \frac{z^{\alpha-1}}{1+z}=e^{\pi i (\alpha-1)}.$$
So $$\oint_C \frac{z^{\alpha-1}}{1+z} dz = 2\pi i b$$
On the first segment (from $\epsilon$ to $R$), $z^{\alpha-1}=x^{\alpha-1}$, on the return trip, $z^{\alpha-1}=(e^{2\pi i} x)^{\alpha-1}.$
The integrals along the circles go to zero as $\epsilon\to0$, $R\to0$.
$$\int_0^\infty \frac{x^{\alpha-1}}{1+x}dx - \int_0^\infty \frac{e^{2\pi i (\alpha-1)} x^{\alpha-1}}{1+x}dx = 2\pi i e^{\pi i (\alpha-1)}$$
$$\begin{aligned}
\int_0^\infty \frac{x^{\alpha-1}}{1+x}dx &=\frac{2\pi i e^{\pi i (\alpha-1)}}{1-e^{2\pi i (\alpha-1)}}\\
&= \frac{2\pi i}{e^{-\pi i (\alpha-1)}-e^{\pi i (\alpha-1)}}
\\
&=\frac{\pi}{\sin \pi(1-\alpha)} \\ &= \frac{\pi}{\sin \pi \alpha}.
\end{aligned}$$