I want to compute this integral $$\displaystyle\int_{0}^{\infty} \frac{x^{1/3}}{1+x^{2}} \ dx$$
What I did was the following. I substituted $x=t^{6}$, so that my $dx= 6t^{5} \ dt$ and so the integral changes to $$\int_{0}^{\infty} \frac{t^2}{1+t^{12}} \cdot 6 t^{5} \ dt =6 \cdot \int_{0}^{\infty} \frac{t^7}{1+t^{12}} \: dt$$
Now If I substitute $t^{4}=v$ then what I will be having is the following integral $$\frac{6}{4}\cdot \int_{0}^{\infty} \frac{v}{1+v^{3}} \ dv$$
Now I can write $1+v^{3} = (1+v) \cdot (1-v+v^{2})$ and so I have
\begin{align*} \int_{0}^{\infty} \frac{v}{1+v^{3}}\: dv &= \int_{0}^{\infty}\biggl[\frac{1}{3}\cdot \frac{v+1}{1-v+v^{2}} - \frac{1}{3} \cdot \frac{1}{1+v}\biggr]\: dv \end{align*}
Now the point is that the integral of $1/(1+v) \to \infty$, so I am not sure if this is the right way to do. Can anyone suggest anything?