Notice $\lim_{x\to 0} \frac{\sin x}{x}$ is bounded at $x = 0$,
$$\begin{align}\int_0^{\infty} \left(\frac{\sin x}{x}\right)^m dx
&= \frac12 \int_{-\infty}^{\infty} \left(\frac{\sin x}{x}\right)^m dx\tag{*1}\\
&= \lim_{\epsilon\to 0} \frac12 \left(\frac{1}{2i}\right)^m \oint_{C_{\epsilon}} \left(\frac{e^{ix} - e^{-ix}}{x}\right)^m dx\tag{*2}
\end{align}$$
We can evaluate the integral $(*1)$ as a limit of a integral over a deformed
contour $C_{\epsilon}$ which has a little half-circle of radius $\epsilon$ at origin:
$$C_{\epsilon} = (-\infty,-\epsilon) \cup \left\{ \epsilon e^{i\theta} : \theta \in [\pi,2\pi] \right\} \cup ( +\epsilon, +\infty)$$
We then split the integrand in $(*2)$ in two pieces, those contains exponential factors $e^{ikx}$ for $k \ge 0$ and those for $k < 0$.
$$(*2) = \lim_{\epsilon\to 0} \frac12 \left(\frac{1}{2i}\right)^m \oint_{C_{\epsilon}} \left( \sum_{k=0}^{\lfloor\frac{m}{2}\rfloor} + \sum_{k=\lfloor\frac{m}{2}\rfloor+1} ^{m} \right) \binom{m}{k} \frac{(-1)^k e^{i(m-2k)x}}{x^m} dx$$
To evaluate the $1^{st}$ piece, we need to complete the contour in upper half-plane. Since the completed contour contains the pole at $0$, we get:
$$\begin{align}
\sum_{k=0}^{\lfloor\frac{m}{2}\rfloor} \text{ in }(*2)
&= \frac12 \left(\frac{1}{2i}\right)^m (2\pi i)\sum_{k=0}^{\lfloor\frac{m}{2}\rfloor} \binom{m}{k} \frac{(-1)^k i^{m-1}(m-2k)^{m-1}}{(m-1)!}\\ &= \frac{\pi m}{2^m} \sum_{k=0}^{\lfloor\frac{m}{2}\rfloor} \frac{(-1)^k (m-2k)^{m-1}}{k!(m-k)!}\tag{*3}\end{align}$$
To evaluate the $2^{nd}$ piece, we need to complete the contour in lower half-plane instead. Since the completed contour no longer contains any pole, it contributes nothing and hence $I_m$ is just equal to R.H.S of $(*3)$.
Update
About the question whether $I_m$ is decreasing. Aside from the exception $I_1 = I_2$, it is strictly decreasing.
For $m \ge 1$, it is clear $I_{2m} > I_{2m+1}$ because the difference of corresponding integrands is non-negative and not identically zero. For the remaining cases, we have:
$$\begin{align}&I_{2m+1}-I_{2m+2}\\
= & \int_{0}^{\infty} \left(\frac{\sin x}{x}\right)^{2m+1}\left(1 - \frac{\sin x}{x}\right) dx\\
= & \left(\sum_{n=0}^{\infty} \int_{2n\pi}^{(2n+1)\pi}\right) \left(\frac{\sin x}{x}\right)^{2m+1}\left[1 - \frac{\sin x}{x} - \left(\frac{x}{x+\pi}\right)^{2m+1}\left(1 + \frac{\sin x}{x + \pi}\right)\right] dx
\end{align}$$
Over the range $\cup_{n=0}^{\infty} (2n\pi,(2n+1)\pi)$, the factor $\left(\frac{\sin x}{x}\right)^{2m+1}$ is positive. The other factor $\Big[\cdots\Big]$ in above integral is bounded below by:
$$
\begin{cases}
1 - \frac{\sin x}{x} - \left(\frac{x}{x+\pi}\right)^3\left(1 + \frac{\sin x}{x + \pi}\right), & \text{ for } x \in (0,\pi)\\
1 - \frac{1}{x} - \frac{x}{x+\pi}\left(1 + \frac{1}{x}\right)
= \frac{(\pi - 2)x - \pi}{x(x+\pi)} & \text{ for } x \in \cup_{n=1}^{\infty}(2n\pi,(2n+1)\pi)
\end{cases}
$$
A simple plot will convince you both bounds are positive in corresponding range. This
implies the integrand in above integral is positive and hence $I_{2m+1} > I_{2m+2}$.