9

How to evaluate the definite integral:

$$ \int \limits_0^\infty\frac {\sin^4(x)} {x^4} \operatorname dx $$

Also provide the reference to various theorems to be to used to evaluate it! Thank you.

Micah
  • 38,108
  • 15
  • 85
  • 133
  • 1
    Put dollar signs around the latex. – J.R. Jan 25 '14 at 19:33
  • 6
    Thank you. I am new to MSE and LaTex. I am just in high school. :) – Abir Mukherjee Jan 25 '14 at 19:36
  • 2
    Look at answers of this, this and in particular this for how to evaluate the integral. – achille hui Jan 25 '14 at 19:40
  • @achille:Thank you! I understood the technique and also the point where I was going wrong. But I have a doubt in the solution where integration by parts is used. I always knew that in integration by parts, the ILATE or LIATE rule is used but in the solution this rule is disobeyed. Will you please tell me sir that why is it happenning? I am confused. Thank you. :) – Abir Mukherjee Jan 25 '14 at 19:49
  • 1
    ILATE and LIATE are just rule of thumbs. Sometimes they work, sometimes they don't. If knowing them stop you from spotting a legal way of integrating by parts, you should forget the rules. – achille hui Jan 25 '14 at 19:56

4 Answers4

6

Recalling the result

$$ \int_{0}^{\infty} G(u)f(u) du = \int_{0}^{\infty} g(u)F(u) du, $$

where $F(u)$ and $G(u)$ are the Laplace transform of $f$ and $g$. Now, applying this to our problem gives

$$ \int_0^\infty\frac {\sin^4(x)} {x^4} dx = 4\int_{0}^{\infty} {\frac {x^2}{ \left( {x}^{2}+4 \right) \left( {x}^{2}+16 \right) } }=\frac{\pi}{3}\,.$$

Note:

1) We used the following Laplace transforms

$$ \mathcal{L} (\sin(x)^4) = {\frac {24}{s \left( {s}^{2}+4 \right) \left( {s}^{2}+16 \right) } },$$

$$ \mathcal{L} ( \frac{x^3}{6} )= \frac{1}{s^4}. $$

2) Use the partial fraction to evaluate the integral

$$ {\frac {x^2}{ \left( {x}^{2}+4 \right) \left( {x}^{2}+16 \right) } }= \frac{4}{3}\, \frac{1}{ {x}^{2}+16 } - \frac{1}{3}\, \frac{1}{ {x}^{2}+4 }.$$

4

$\newcommand{\+}{^{\dagger}}% \newcommand{\angles}[1]{\left\langle #1 \right\rangle}% \newcommand{\braces}[1]{\left\lbrace #1 \right\rbrace}% \newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}% \newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}% \newcommand{\dd}{{\rm d}}% \newcommand{\down}{\downarrow}% \newcommand{\ds}[1]{\displaystyle{#1}}% \newcommand{\equalby}[1]{{#1 \atop {= \atop \vphantom{\huge A}}}}% \newcommand{\expo}[1]{\,{\rm e}^{#1}\,}% \newcommand{\fermi}{\,{\rm f}}% \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}% \newcommand{\half}{{1 \over 2}}% \newcommand{\ic}{{\rm i}}% \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow}% \newcommand{\isdiv}{\,\left.\right\vert\,}% \newcommand{\ket}[1]{\left\vert #1\right\rangle}% \newcommand{\ol}[1]{\overline{#1}}% \newcommand{\pars}[1]{\left( #1 \right)}% \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}}% \newcommand{\root}[2][]{\,\sqrt[#1]{\,#2\,}\,}% \newcommand{\sech}{\,{\rm sech}}% \newcommand{\sgn}{\,{\rm sgn}}% \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}}% \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ $\ds{\int_{0}^{\infty}{\sin^4\pars{x} \over x^4}\,\dd x:\ {\large ?}}$.

Let's $\ds{{\cal I}\pars{\mu} \equiv \half\int_{-\infty}^{\infty} {\sin^4\pars{\mu x} \over x^4}\,\dd x\ \mbox{with}\ \mu > 0}$ and such that $\ds{\int_{0}^{\infty}{\sin^4\pars{x} \over x^4}\,\dd x = {\cal I}\pars{1}}$. Also, $\ds{{\cal I}\pars{0^{+}} = 0}$.

\begin{align} {\cal I}'\pars{\mu}&=2\int_{-\infty}^{\infty}{\sin^{3}\pars{\mu x}\cos\pars{\mu x} \over x^3}\,\dd x =\int_{-\infty}^{\infty}{\sin^{2}\pars{\mu x}\sin\pars{2\mu x} \over x^{3}}\,\dd x \\[3mm]&=\half\int_{-\infty}^{\infty} {\sin\pars{2\mu x} - \sin\pars{2\mu x}\cos\pars{2\mu x} \over x^{3}}\,\dd x ={1 \over 4}\int_{-\infty}^{\infty}{2\sin\pars{2\mu x} - \sin\pars{4\mu x} \over x^{3}} \,\dd x\\[3mm]&\mbox{with}\ {\cal I}'\pars{0^{+}} = 0 \end{align}

\begin{align} {\cal I}''\pars{\mu}&=\int_{-\infty}^{\infty} {\cos\pars{2\mu x} - \cos\pars{4\mu x} \over x^{2}}\,\dd x\,, \qquad{\cal I}''\pars{0^{+}} = 0 \end{align}

\begin{align} {\cal I}'''\pars{\mu}&=\int_{-\infty}^{\infty} {-2\sin\pars{2\mu x} + 4\sin\pars{4\mu x} \over x}\,\dd x\ =-2\int_{-\infty}^{\infty}{\sin\pars{x} \over x}\,\dd x + 4\int_{-\infty}^{\infty}{\sin\pars{x} \over x}\,\dd x \\[3mm]&=2\pi\quad\mbox{where we used the well know result}\ \int_{-\infty}^{\infty}{\sin\pars{x} \over x}\,\dd x = \pi \end{align}

Then, $$ {\cal I}''\pars{\mu} = 2\pi\mu\,,\quad{\cal I}'\pars{\mu} = \pi\mu^{2}\quad \mbox{and}\quad{\cal I}\pars{\mu} = {1 \over 3}\,\pi\mu^{3} $$ $$\color{#00f}{\large% \int_{0}^{\infty}{\sin^{4}\pars{x} \over x^{4}}\,\dd x = {1 \over 3}\,\pi} $$

Felix Marin
  • 89,464
3

We can use a version of Parseval's equality:

$$\int_{-\infty}^{\infty} dx \, f(x)^2 = \frac1{2 \pi} \int_{-\infty}^{\infty} dk \, F(k)^2$$

where

$$F(k) = \int_{-\infty}^{\infty} dx \, f(x) \, e^{i k x}$$

Now, we may use the well-known FT:

$$f(x) = \frac{\sin^2{x}}{x^2} \implies F(k) = \pi \left (1-\frac{|k|}{2} \right ) $$

(This result may be easily derived using, e.g., the convolution theorem on the even more basic FT of $\sin{x}/x$.)

Thus the integral is $1/2$ of

$$\frac1{2 \pi} \pi^2 \int_{-2}^2 dk \, \left (1-\frac{|k|}{2} \right )^2 = \pi \int_0^2 \left ( 1-k+\frac14 k^2\right ) = \frac{2 \pi}{3}$$

or $\pi/3$.

Ron Gordon
  • 138,521
1

NOTE: This is a sketch of what a solution may look like, but it is what it is and nothing more - a sketch.

I would do it 'a la residue'.

First, note that:

$$\sin^4{x} = \Re \frac{e^{4it}-4e^{2it}+3}{8}$$

Then note that if we choose a contour integral over the semicircle in the complex plane - that is on $\Gamma_{R}$ as $R \rightarrow \infty$ - we are bounded by $\frac{1}{R^3} \rightarrow 0$ as $R \rightarrow \infty$. We note that the only pole is at $z=0$ and so this problem reduces to $2\cdot \int_{0}^{\infty} \frac{\sin^4(x)}{x^4} = -\pi \cdot i \cdot Res_{z=0} \frac{\sin^4(z)}{z^4}$. Now the third derivative is $\frac{-64ie^{4it} + 32ie^{2it}}{8}$. This gives a residue of $1/3! \cdot \frac{-32i}{8} = -2i/3$.

Hence, we conclude that $\int_{0}^{\infty} \frac{\sin^4(x)}{x^4} dx = 1/2\cdot \pi i \cdot -2i/3 = \pi/3$.

  • 1
    @AbirMukherjee, does this help? I know there is a litany of other answers on this, but (I think) all are for arbitary $n \in \mathbb{Z}+$. The template is very much the same as we vary $n$, so long as $n\geq 2$. For $n\leq 1$, one must then be more careful with the analysis. – Christopher K Jan 25 '14 at 20:13
  • :Your solution seems good but unfortunately I dont know complex analysis. And hence right now I am unable to understand the solution completely. But I hope to develop a basic understanding of complex analysis very soon. But till then,if you can provide a solution without any complex analysis then it will be highly useful to. But thank you for your help sir! :) – Abir Mukherjee Jan 25 '14 at 20:35
  • @abirmukherjee, specifically then what do you know? Offhand I know there are two other methods using i) Laplace transforms and ii) double integrals + Fubini's Theorem. – Christopher K Jan 25 '14 at 20:40
  • :I know double integral and will also be able to understand Laplace Transform. If you can provide a solution in these two methods, it will be really helpful! Thank you. :) – Abir Mukherjee Jan 25 '14 at 20:44