How to find $$\displaystyle \int_0^\infty \frac{1}{(1+x^2)^n}dx\quad ?$$
For $n=1$, we have $(\arctan x) |_0^\infty = \frac{\pi}{2}.$
I tried to integrate by parts to get recurrent formula:
$$ \int_0^\infty \frac{1}{(1+x^2)^n}dx = \left. \frac{x}{(1 + x^2)^n} \right|_0^\infty ( = 0) + 2n\int_0^\infty \frac{x^2}{(x^2 + 1)^{n+1}}$$