We may use the generalized Newton's binomial and the Ramanujan Master Theorem (RMT).
The binomial theorem states the following (https://en.wikipedia.org/wiki/Binomial_theorem)
$$\frac{1}{(1+y)^m}=\sum_{k=0}^\infty \binom{m+k-1}{k}(-x)^k=\sum_{k=0}^\infty \frac{(m+k-1)!}{(m-1)!}\frac{(-x)^k}{k!}$$
For convenience we may define $\phi(k)=\frac{(m+k-1)!}{(m-1)!}$.
Let's recall the RMT (https://en.wikipedia.org/wiki/Ramanujan%27s_master_theorem), which states that if a complex-valued function $f(x)$ has an expansion of the form
$ f(x)=\sum _{k=0}^{\infty }{\frac {\,\varphi (k)\,}{k!}}(-x)^{k}$ then
$$\int _{0}^{\infty }x^{s-1}f(x)\,dx=\Gamma (s)\,\varphi (-s)$$
Now we may observe that the initial integral may be seen as a Mellin transform; applying it to the case at hand we obtain the following
$$I=\int_{0}^{\infty} \frac{dx}{(1+x^n)^m}=\frac{1}{n}\int_{0}^{\infty} \frac{y^{\tfrac{1}{n} -1}dy}{(1+y)^m}=\frac{1}{n}\Gamma{\left(\frac{1}{n}\right)}\frac{(m-1-\tfrac{1}{n})!}{(m-1)!}
$$
the change of variable we made was $y=x^n$.
Solving further, we get the following
$$I=\frac{\Gamma\left(1+\tfrac{1}{n}\right)\Gamma\left(m-\tfrac{1}{n}\right)}{\Gamma\left(m\right)}$$