This is the more bone-headed approach, but it works.
Letting $x=bt,$ you get the integral $$\frac{1}{b^7}\int_0^{\infty}\frac1{(t^2+1)^4}\,dt\tag 1$$ Using Wolfram Alpha, I get the partial fractions:
$$\frac1{(t^2+1)^4}=\frac{5i}{32}\left(\frac{1}{t+i}-\frac1{t-i}\right)-\frac5{32}\left(\frac{1}{(t+i)^2}+\frac1{(t-i)^2}\right)-\frac i8\left(\frac1{(t+i)^3}-\frac{1}{(t-i)^3}\right)+\frac1{16}\left(\frac{1}{(t+i)^4}+\frac1{(t-i)^4}\right)$$
The pairs cancel out in the integral from $0$ to $\infty,$ except for the first terms.
And $$\frac{5i}{32}\left(\frac{1}{t+i}-\frac{1}{t-i}\right)=\frac{5}{16}\frac{1}{t^2+1}$$
So you get tbe result:
$$\frac{5}{16b^7}\int_{0}^{\infty}\frac{dt}{t^2+1}=\frac{5\pi}{32b^7}$$
The classic substitution is $t=\tan\theta$ so $dt=\sec^2\theta\,d\theta.$ and $1+t^2=\sec^2\theta.$ Then the integral becomes:
$$\frac{1}{b^7}\int_{0}^{\pi/2}\cos^6\theta\,d\theta$$
But using $\cos(\theta)=(e^{i\theta}+e^{-i\theta})/{2},$ you get: $$\cos^6(\theta)=\frac{1}{32}\left(\cos(6\theta)+6\cos(4\theta)+15\cos(2\theta)+10\right)$$
The $\cos(2k\theta)$ integrals are zero.
This shows more generally why:
$$\int_{0}^{\infty}\frac{dt}{(1+t^2)^n}=\int_0^{\pi/2}\cos^{2n-2}\theta\,d\theta=\frac{\binom{2n-2}{n-1}\pi}{2^{2n-1}}$$