Applying Riemann-Stieltjes Integrals:
$$
\begin{align}
\sum_{k=1}^n\frac1k
&=\int_{1^-}^{n^+}\frac1x\,\mathrm{d}\lfloor x\rfloor\tag1\\
&=\int_1^n\frac1x\,\mathrm{d}x-\int_{1^-}^{n^+}\frac1x\,\mathrm{d}\!\left(\{x\}-\tfrac12\right)\tag2\\
&=\log(n)+\frac1{2n}+\frac12-\int_{1^-}^{n^+}\frac{\{x\}-\tfrac12}{x^2}\,\mathrm{d}x\tag3\\
&=\log(n)+\frac1{2n}+\frac12-\int_{1^-}^{n^+}\frac1{x^2}\,\mathrm{d}\left(\tfrac12\{x\}^2-\tfrac12\{x\}+\tfrac1{12}\right)\tag4\\
&=\log(n)+\frac1{2n}+\frac12-\frac1{12n^2}+\frac1{12}-2\int_1^n\frac{\tfrac12\{x\}^2-\tfrac12\{x\}+\tfrac1{12}}{x^3}\,\mathrm{d}x\tag5\\
&=\log(n)+\frac1{2n}-\frac1{12n^2}+\frac7{12}-2\sum_{k=1}^{n-1}\int_0^1\frac{\tfrac12x^2-\tfrac12x+\tfrac1{12}}{(k+x)^3}\,\mathrm{d}x\tag6\\
&=\log(n)+\frac1{2n}-\frac1{12n^2}+\gamma+2\sum_{k=n}^\infty\int_0^1\frac{\tfrac12x^2-\tfrac12x+\tfrac1{12}}{(k+x)^3}\,\mathrm{d}x\tag7\\
&=\log(n)+\frac1{2n}-\frac1{12n^2}+\gamma+6\sum_{k=n}^\infty\int_0^1\frac{\tfrac16x^3-\tfrac14x^2+\tfrac1{12}x}{(k+x)^4}\,\mathrm{d}x\tag8\\
&=\log(n)+\frac1{2n}-\frac1{12n^2}+\gamma\\
&+6\sum_{k=n}^\infty\int_0^1\left(\tfrac16x^3-\tfrac14x^2+\tfrac1{12}x\right)\left(\frac1{(k+x)^4}-\frac1{k^4}\right)\mathrm{d}x\tag9\\
&=\log(n)+\frac1{2n}-\frac1{12n^2}+\gamma+O\!\left(\frac1{n^4}\right)\tag{10}
\end{align}
$$
Explanation:
$\phantom{1}(1)$: write sum as a Riemann-Stieltjes integral
$\phantom{1}(2)$: $\lfloor x\rfloor=x-\{x\}$ and $\{x\}-\frac12$ has mean $0$ (so its antiderivative is periodic)
$\phantom{1}(3)$: integrate by parts
$\phantom{1}(4)$: prepare to integrate by parts and $\tfrac12x^2-\tfrac12x+\tfrac1{12}$ has mean $0$
$\phantom{1}(5)$: integrate by parts
$\phantom{1}(6)$: break integral into unit intervals
$\phantom{1}(7)$: letting $n\to\infty$, we get $\gamma=\frac7{12}-2\sum\limits_{k=1}^\infty\int_0^1\frac{\tfrac12x^2-\tfrac12x+\tfrac1{12}}{(k+x)^3}\,\mathrm{d}x$
$\phantom{1}(8)$: integrate by parts
$\phantom{1}(9)$: $\tfrac16x^3-\tfrac14x^2+\tfrac1{12}x$ has mean $0$
$(10)$: $\left|\,\color{#C00}{6}\color{#090}{\sum\limits_{k=n}^\infty}\color{#C00}{\int_0^1\left(\tfrac16x^3-\tfrac14x^2+\tfrac1{12}x\right)}\color{#090}{\left(\frac1{(k+x)^4}-\frac1{k^4}\right)}\color{#C00}{\mathrm{d}x}\,\right|$
$\phantom{\text{(10):}}$ $\le\color{#C00}{\frac1{32}}\color{#090}{\sum\limits_{k=n}^\infty\left(\frac1{k^4}-\frac1{(k+1)^4}\right)}$
$\phantom{\text{(10):}}$ $=\frac1{32n^4}$
Therefore,
$$
\begin{align}
\gamma
&=\sum_{k=1}^n\frac1k-\log(n)-\frac1{2n}+\frac1{12n^2}+O\!\left(\frac1{n^4}\right)\\
&=\sum_{k=1}^{n-1}\frac1k-\log(n)+\frac1{2n}+\frac1{12n^2}+O\!\left(\frac1{n^4}\right)\tag{11}
\end{align}
$$
where the big-O term is smaller than $\frac1{32n^4}$.