$A\in M_n(\mathbb F)$ $$\det{A}=\begin{vmatrix} -1 &\;1&\;1&...&\;1&\;1&\;1 \\ -2 &-1&\;0&\ldots&\;0&\;0&\;1\\ -2&\;0&-1&...&\;0&\;0&\;1\\\vdots&\vdots&\vdots&\ddots&\vdots&\vdots&\vdots\\-2&0&\;0&\ldots&-1&\;0&\;1\\-2&\;0&\;0&\ldots&\;0&-1&\;1\\-2&-2&-2&\ldots&-2&-2&-1 \end{vmatrix}=?$$
My work: I subtracted $\text{the last ($n$-th) row}$ so as to free the terrain for the LaPlace transform to the $\text{first column}$. I got: $$\begin{vmatrix} -1 &\;1&\;1&\ldots&\;1&\;1&\;1 \\ 0 &1&\;2&\ldots&\;2&\;2&\;2\\ 0&\;2&1&\ldots&\;2&\;2&\;2\\\vdots&\vdots&\vdots&\ddots&\vdots&\vdots&\vdots\\0&2&\;2&\ldots&\;1&\;2&\;2\\\;0&\;2&\;2&\ldots&\;2&\;1&\;2\\-2&-2&-2&\ldots&-2&-2&-1 \end{vmatrix}$$ Then I have two sumands: $$-1\cdot\begin{vmatrix} \;1&\;2&\ldots&\;2&\;2&\;2\\ \;2&1&\ldots&\;2&\;2&\;2\\\vdots&\vdots&\ddots&\vdots&\vdots&\vdots\\\;2&\;2&\ldots&\;1&\;2&\;2\\\;2&\;2&\ldots&\;2&\;1&\;2\\-2&-2&\ldots&-2&-2&-1 \end{vmatrix}+(-1)^{n+1}\cdot(-2)\cdot\begin{vmatrix} \;1&\;1&\ldots&\;1&\;1&\;1 \\ 1&\;\;2&\ldots&\;2&\;2&\;2\\ \;2&1&...&\;2&\;2&\;2\\\vdots&\vdots&\ddots&\vdots&\vdots&\vdots\\\;2&\;2&\ldots&\;1&\;2&\;2\\\;2&\;2&\ldots&\;2&\;1&\;2\end{vmatrix}$$ $$=\begin{vmatrix} \;1&\;2&\ldots&\;2&\;2&\;2\\ \;2&1&\ldots&\;2&\;2&\;2\\\vdots&\vdots&\ddots&\vdots&\vdots&\vdots\\\;2&\;2&\ldots&\;1&\;2&\;2\\\;2&\;2&\ldots&\;2&\;1&\;2\\\;2&\;2&\ldots&\;2&\;2&\;1 \end{vmatrix}+2\cdot(-1)^{n}\cdot\begin{vmatrix} \;1&\;1&\ldots&\;1&\;1&\;1 \\ 1&\;\;2&\ldots&\;2&\;2&\;2\\ \;2&1&\ldots&\;2&\;2&\;2\\\vdots&\vdots&\ddots&\vdots&\vdots&\vdots\\\;2&\;2&\ldots&\;1&\;2&\;2\\\;2&\;2&\ldots&\;2&\;1&\;2\end{vmatrix}$$ I applied a formula derived earlier to the first sumand (where, instead of 1's on the main diagonal, there are parameters $a_k$ and x, whenever $i\ne j$ - under and above the diagonal): It looked like this: $$\color{blue}{\begin{vmatrix} \;a_1&\;x&\ldots&\;x&\;x&\;x\\ \;x&a_2&\ldots&\;x&\;x&\;x\\\vdots&\vdots&\ddots&\vdots&\vdots&\vdots\\\;x&\;x&\ldots&\;a_{n-2}&\;x&\;x\\\;x&\;x&\ldots&\;x&\;a_{n-1}&\;x\\\;x&\;x&\ldots&\;x&\;x&\;a_n\end{vmatrix} }$$ After subtracting the $\text{first row}$ from the rest of them: $$\color{blue}{\begin{vmatrix}\;a_1&\;x&\ldots&\;x&\;x&\;x\\ \;x-a_1&a_2-x&\ldots&\;0&\;0&\;0\\\vdots&\vdots&\ddots&\vdots&\vdots&\vdots\\\;x-a_1&\;0&\ldots&\;a_{n-2}-x&\;0&\;0\\\;x-a_1&\;0&\ldots&\;0&\;a_{n-1}-x&\;0\\\;x-a_1&\;0&...&\;0&\;0&\;a_n-x\end{vmatrix}}$$ After knocking out the factor $a_j-x$ from every column: $$\color{blue}{\prod_{j=1}^{n} (a_j-x)\cdot\begin{vmatrix} \;\frac{a_1}{a_1-x}&\;\frac{x}{a_2-x}&\ldots&\;\frac{x}{a_{n-2}-x}&\;\frac{x}{a_{n-1}-x}&\;\frac{x}{a_n-x}\\ -1&1&\ldots&\;0&\;0&\;0\\\vdots&\vdots&\ddots&\vdots&\vdots&\vdots\\-1&\;0&\ldots&\;1&\;0&\;0\\-1&\;0&\ldots&\;0&\;1&\;0\\-1&\;0&\ldots&\;0&\;0&\;1\end{vmatrix}}$$ After adding each column to the $\text{first}$ column we get the element: $$\frac{a_1}{a_1-x}+\sum_{j=2}^{n}\frac{x}{a_j-x}=\frac{a_1-x}{a_1-x} +\frac{x}{a_1-x}+x\sum_{j=2}^{n}\frac{1}{a_j-x}=1+x\sum_{j=1}^{n}\frac{1}{a_j-x}$$ on the position $1,1$ and $I_{n-1}$ inside the matrix. $$\color{blue}{\implies\det{X}=\prod_{j=1}^{n} (a_j-x)\;\cdot\;\left(1+x\sum_{j=1}^{n}\frac{1}{a_j-x}\right)}$$ In the task above, when I plugged $1,2$ and $(n-1)$ into the formula I got (for the first sumand): $$\prod_{k=1}^{n-1}(-1)\;\cdot\;(1-2(n-1))=(-1)^{n-1}(3-2n)$$ The second summand was the result of a transformation into $\text{lower triangular matrix}$ after subtracting each column from the next one: $$\begin{vmatrix} \;1&\;0&\ldots&\;0&\;0&\;0 \\ 1&\;\;1&\ldots&\;0&\;0&\;0\\ \;2&-1&\ldots&\;0&\;0&\;0\\\vdots&\vdots&\ddots&\vdots&\vdots&\vdots\\\;2&\;0&\ldots&-1&\;1&\;0\\\;2&\;0&\ldots&\;0&-1&1\end{vmatrix}$$ The $\text{product of the diagonal}$ is $1$. My final answer is (thanks to users in comments who noticed the arithmetic mistakes): $$\det A=(-1)^{n-1}(3-2n)+2\cdot(-1)^n=(2n-3)\cdot(-1)^n+2\cdot(-1)^n$$ $$\det A=(-1)^n(2n-3+2)=(-1)^n(2n-1)$$