Edit: after checking through my steps several times, I got the answer:
[Step 1]: Let $a_1=\lambda(1+\sigma_1),\ a_2=\lambda(1+\sigma_2),\ ...,\ a_n=\lambda(1+\sigma_n)$
$$D=\begin{vmatrix}\lambda(1+\sigma_1)&\lambda&\lambda&...&\lambda\\\lambda&\lambda(1+\sigma_2)&\lambda&...&\lambda\\\lambda&\lambda&\lambda(1+\sigma_3)&...&\lambda\\...&...&...&...&...\\\lambda&\lambda&\lambda&...&\lambda(1+\sigma_n)\end{vmatrix}\\=\lambda^n\begin{vmatrix}(1+\sigma_1)&1&1&...&1\\1&(1+\sigma_2)&1&...&1\\1&1&(1+\sigma_3)&...&1\\...&...&...&...&...\\1&1&1&...&(1+\sigma_n)\end{vmatrix}\\=\lambda^n\begin{vmatrix}(1+\sigma_1)&1&1&...&1\\-\sigma_1&\sigma_2&0&...&0\\-\sigma_1&0&\sigma_3&...&0\\...&...&...&...&...\\-\sigma_1&0&0&...&\sigma_n\end{vmatrix}\\=-\sigma_1\lambda^n\begin{vmatrix}\frac{(1+\sigma_1)}{-\sigma_1}&1&1&...&1\\1&\sigma_2&0&...&0\\1&0&\sigma_3&...&0\\...&...&...&...&...\\1&0&0&...&\sigma_n\end{vmatrix}$$
[Step 2]: apply Laplace expansion for the 1st column
$$D=-\sigma_1\lambda^n[(-1)^{1+1}(\sigma_2\sigma_3...\sigma_n)\frac{(1+\sigma_1)}{-\sigma_1}+(-1)^{1+2}(-1)^{1+1}\frac{(\sigma_2\sigma_3...\sigma_n)}{\sigma_2}+(-1)^{1+3}(-1)^{1+2}\frac{(\sigma_2\sigma_3...\sigma_n)}{\sigma_3}+(-1)^{1+4}(-1)^{1+3}\frac{(\sigma_2\sigma_3...\sigma_n)}{\sigma_4}+...+(-1)^{1+n}(-1)^{n}\frac{(\sigma_2\sigma_3...\sigma_n)}{\sigma_n}]\\=\lambda^n(1+\frac{1}{\sigma_1}+\frac{1}{\sigma_2}+\frac{1}{\sigma_3}+...+\frac{1}{\sigma_n})(\sigma_1\sigma_2\sigma_3...\sigma_n)$$
[Step 3]: Because $a_1=\lambda(1+\sigma_1),\ a_2=\lambda(1+\sigma_2),\ ...,\ a_n=\lambda(1+\sigma_n)$
$$\varphi(\lambda)=\lambda^n(\sigma_1\sigma_2...\sigma_n)\ \ \ \textbf{[1]}$$
$$\lambda\frac{d\varphi(\lambda)}{d\lambda}=\lambda\frac{d}{d\lambda}e^{ln(\varphi(\lambda))}=\lambda(\frac{1}{\lambda-a_1}+\frac{1}{\lambda-a_1}+...+\frac{1}{\lambda-a_n})\varphi(\lambda)=(-\frac{1}{\sigma_1}-\frac{1}{\sigma_2}-...-\frac{1}{\sigma_n})\varphi(\lambda)\ \ \ \textbf{[2]}$$
$$\varphi(\lambda)-\lambda\frac{d\varphi}{d\lambda}=\lambda^n(1+\frac{1}{\sigma_1}+\frac{1}{\sigma_2}+...+\frac{1}{\sigma_n})(\sigma_1\sigma_2...\sigma_n)\ \ \ \textbf{[3]}$$