First let's try and make clear that
distributing undistinguishable balls into distinguishable bins does not fully specify which stochastic mechanism we are actually
considering, and that is frequently cause of misunderstanding and erroneous conclusions.
Second, please allow me to change the symbols as to keep congruence with other related posts that I am going to cite.
So let's speak of $s$ undistinguishable balls, put into $m$ distinguishable bins, each with the same max capacity $r$.
a) Balls laid into the bins
This is what is considered in the Mathpage article that you cite.
In this case we are looking for
$$N_{\,b} (s,r,m) = \text{No}\text{. of solutions to}\;\left\{ \begin{gathered}
0 \leqslant \text{integer }x_{\,j} \leqslant r \hfill \\
x_{\,1} + x_{\,2} + \cdots + x_{\,m} = s \hfill \\
\end{gathered} \right.$$
which is given by the closed sum
$$
N_b (s,r,m)\quad \left| {\;0 \leqslant \text{integers }s,m,r} \right.\quad =
\sum\limits_{\left( {0\, \leqslant } \right)\,\,k\,\,\left( { \leqslant \,\frac{s}{r+1}\, \leqslant \,m} \right)}
{\left( { - 1} \right)^k \binom{m}{k}
\binom
{ s + m - 1 - k\left( {r + 1} \right) }
{ s - k\left( {r + 1} \right)}\ }
$$
as thoroughly explained in this related post.
In particular note the way of expressing the second binomial, which allows to waive from the bounds on the sum.
Also note that the "mechanism" of laying the balls in the bins, when the capacity is unlimited leads to a total
number of ways which is
$$
N_b (s,s,m) = \left( \matrix{
s + m - 1 \cr
s \cr} \right)
$$
i.e. the number of weak compositions of $s$ into $m$ parts, which also is the "Stars&bars" mechanism, and by that
we can say that we "are launching the bins (the separators, the bars) into the balls".
Then your question turns out into computing :
- the number of ways to choose $q$ out of $m$ bins to fill up;
- the number of ways to distribute the remaining $s-qr$ balls into $m-q$ bins, with capacity $r-1$
i.e.
$$ \bbox[lightyellow] {
N_f (s,r,m,q) = \left( \matrix{
m \cr
q \cr} \right)N_b (s - qr,r - 1,m - q)
}$$
b) Balls thrown into the bins
Instead, by "launching the balls into the bins" normally it is understood that for each ball we have $m$ choices where to launch it
and thus a total of $$m^s$$ equiprobable events, when the capacity is not limited.
That is quite different from the above, and corresponds to the "mechanism" in which the balls are labelled with the launching sequence,
and they land and stack one over the other inside each bin. So each bin is either empty or contains a subset of $\{1,2, \cdots, s \}$.
Now, $m^s$ is the number of $s$-tuples $(b_1, b_2, \ldots, b_s)$, with $b_k$ representing the landing bin of the $k$-th ball.
But this representation is not helpful for counting the number of balls into the same bin, and we have better to refer to
the following splitting of $m^s$
$$
\eqalign{
& m^{\,s} = \sum\limits_{\left( {0\, \le } \right)\,\,k\,\,\left( { \le \,m} \right)} {\left\{ \matrix{
s \cr
k \cr} \right\}m^{\,\underline {\,k\,} } } = \cr
& = \sum\limits_{\left( {0\, \le } \right)\,\,k\,\,\left( { \le \,m} \right)} {\underbrace {\;\left( \matrix{
m \cr
k \cr} \right)\;}_{\matrix{
{{\rm choice}\,k\,} \cr
{{\rm non - empty}\,{\rm bins}} \cr
} }\underbrace {\;\left\{ \matrix{
s \cr
k \cr} \right\}\;}_{\matrix{
{{\rm partition }\left\{ {{\rm 1}{\rm ,} \cdots {\rm ,s}} \right\}} \cr
{{\rm into}\,k\,{\rm sub - sets}} \cr
} }\underbrace {\,k!\;}_{\matrix{
{{\rm permute}\,{\rm the}} \cr
{{\rm }k{\rm subsets(bins)}} \cr
} }} \cr}
$$
which hinges upon the the Stirling N. of the 2nd kind.
Introducing the limitation on the capacity of the bins, i.e. on the size of the sub-sets, we need to call
into play the Restrained Stirling N. 2nd kind, indicated by $\left\{ \matrix{ s \cr k \cr} \right\}_{\,r}$.
Necessarily proceeding very concisely and schematically,
denote
denote as
$ L_{\,b\,} (s,r,m) $
the No. of lists of $m$ sub-sets $ \left[ {\left\{ {S_{\,1} } \right\},\left\{ {S_{\,2} } \right\}, \cdots ,\left\{ {S_{\,m} } \right\}} \right]$
partitioning $\left\{ {1,\,2,\, \cdots ,\,s} \right\}$;
the sub-sets have size $\le r$, and might be also empty, and their order in the list counts.
so that it is
$$
L_{\,b\,} (s,r,m) = \sum\limits_{\left( {0\, \le } \right)\,\,k\,\,\left( { \le \,m} \right)} {\left\{ \matrix{
s \cr
k \cr} \right\}_{\,r} m^{\,\underline {\,k\,} } } \;\;:\quad L_{\,b\,} (s,s,m) = m^{\,s}
$$
Then, denoting with $c_1, c_2,\ldots, c_m$ the size of the $m$ subsets, these will represent a
weak composition of $s$ into $m$ parts not greater than $r$, and the number of ways to compose the
$m$ subsets will be
$$
\eqalign{
& L_{\,b\,} (s,r,m) = \cr
& = \sum\limits_{\left\{ {\matrix{
{0\, \le \,c_{\,j} \, \le \,r} \cr
{c_{\,1} + c_{\,2} + \, \cdots + c_{\,m} = s} \cr
} } \right.} {\left( \matrix{
s \cr
c_{\,1} \cr} \right)\left( \matrix{
s - c_{\,1} \cr
\,c_{\,2} \cr} \right) \cdots \left( \matrix{
s - c_{\,1} - \,c_{\,2} - \cdots - c_{\,m - 1} \cr
\,c_{\,m} \cr} \right)} = \cr
& = \sum\limits_{\left\{ {\matrix{
{0\, \le \,c_{\,j} \, \le \,r} \cr
{c_{\,1} + c_{\,2} + \, \cdots + c_{\,m} = s} \cr
} } \right.} {\left( \matrix{
s \cr
c_{\,1} ,\,c_{\,2} ,\, \cdots ,c_{\,m} \cr} \right)} \cr}
$$
Finally we can split $L_b$ according to the exact number ($j$ in the addends below) of the bins saturated at the max capacity $r$
$$
\eqalign{
& L_{\,b\,} (s,r,m) = \cr
& = \sum\limits_{\left\{ {\matrix{
{0\, \le \,c_{\,j} \, \le \,r} \cr
{c_{\,1} + c_{\,2} + \, \cdots + c_{\,m} = s} \cr
} } \right.} {\left( \matrix{
s \cr
c_{\,1} ,\,c_{\,2} ,\, \cdots ,c_{\,m} \cr} \right)} = \cr
& = \sum\limits_{\left\{ {\matrix{
{0\, \le \,c_{\,1} ,\,c_{\,2} ,\, \cdots ,\,c_{\,m} \, < \,r} \cr
{c_{\,1} + c_{\,2} + \, \cdots + c_{\,m} = s} \cr
} } \right.} {\left( \matrix{
s \cr
c_{\,1} ,\,c_{\,2} ,\, \cdots ,c_{\,m} \cr} \right)} + \cr
& + \sum\limits_{\left\{ {\matrix{
{0\, \le \,c_{\,1} ,\,c_{\,2} ,\, \cdots ,\,c_{\,m - 1} \, < \,r} \cr
{c_{\,1} + c_{\,2} + \, \cdots + c_{\,m - 1} = s - r} \cr
} } \right.} {\left( \matrix{
m \cr
1 \cr} \right)\left( \matrix{
s \cr
c_{\,1} ,\,c_{\,2} ,\, \cdots ,c_{\,m - 1} ,r \cr} \right)} + \cr
& + \sum\limits_{\left\{ {\matrix{
{0\, \le \,c_{\,1} ,\,c_{\,2} ,\, \cdots ,\,c_{\,m - 2} \, < \,r} \cr
{c_{\,1} + c_{\,2} + \, \cdots + c_{\,m - 2} = s - 2r} \cr
} } \right.} {\left( \matrix{
m \cr
2 \cr} \right)\left( \matrix{
s \cr
c_{\,1} ,\,c_{\,2} ,\, \cdots ,c_{\,m - 2} ,r,r \cr} \right)} + \cr
& \quad \quad \quad \quad \quad \quad \quad \quad \vdots \cr
& + \sum\limits_{\left\{ {\matrix{
{0\, \le \,c_{\,1} ,\,c_{\,2} ,\, \cdots ,\,c_{\,m - 2} \, < \,r} \cr
{c_{\,1} + c_{\,2} + \, \cdots + c_{\,m - \left\lfloor {s/r} \right\rfloor } = s - \left\lfloor {s/r} \right\rfloor r} \cr
} } \right.} {\left( \matrix{
m \cr
\left\lfloor {s/r} \right\rfloor \cr} \right)\left( \matrix{
s \cr
c_{\,1} ,\,\, \cdots ,c_{\,m - \left\lfloor {s/r} \right\rfloor } ,\underbrace {r, \cdots ,r}_{\left\lfloor {s/r} \right\rfloor } \cr} \right)} = \cr
& = \sum\limits_{0\, \le \,j\, \le \,\left\lfloor {s/r} \right\rfloor } {\left( \matrix{
m \cr
j \cr} \right){{s!} \over {\left( {s - j\,r} \right)!\left( {r!} \right)^{\,j} }}L_{\,b\,} (s - j\,r,\;r - 1,\;m - j)} \cr}
$$
or adding the initial conditions, so that it can be used also as a recurrence
$$ \bbox[lightyellow] {
\eqalign{
& L_{\,b\,} (s,r,m) = \sum\limits_{\left\{ {\matrix{
{0\, \le \,c_{\,j} \, \le \,r} \cr
{c_{\,1} + c_{\,2} + \, \cdots + c_{\,m} = s} \cr
} } \right.} {\left( \matrix{
s \cr
c_{\,1} ,\,c_{\,2} ,\, \cdots ,c_{\,m} \cr} \right)} = \cr
& = \left[ {0 = r = s} \right] + \sum\limits_{\left( {0\, \le } \right)\,j\, \le \,\left\lfloor {s/r} \right\rfloor } {\left( \matrix{
m \cr
j \cr} \right){{s!} \over {\left( {s - j\,r} \right)!\left( {r!} \right)^{\,j} }}L_{\,b\,} (s - j\,r,\;r - 1,\;m - j)} = \cr
& = \left[ {0 = r = s} \right] + \sum\limits_{\left( {0\, \le } \right)\,j\,\left( { \le \,\left\lfloor {s/r} \right\rfloor \, \le \,m} \right)} {\left( \matrix{
m \cr
j \cr} \right)\left( \matrix{
s \cr
j\,r \cr} \right){{\left( {j\,r} \right)!} \over {\left( {r!} \right)^{\,j} }}L_{\,b\,} (s - j\,r,\;r - 1,\;m - j)} \cr}
}$$
where the square brackets at the beginning are Iverson bracket.