Suppose I throw $m$ balls in $n$ bins uniformly and independently. Now the question is to analyse the probability that a given bin (say the first bin) has atleast $k$ balls.
Intuitively, I can choose $k$ balls out of $m$ first and then place them in that particular bin and I don't care about the rest of the balls so the answer should be $\leq {m \choose k} \left(\frac{1}{n}\right)^k$
Working this out rigorously:
Pr[atleast $k$ balls] = $\sum_{i=k}^m$ Pr[exactly $i$ balls]
$$ = {m \choose k}\left(\frac{1}{n}\right)^k\left(1-\frac{1}{n}\right)^{m-k} + {m \choose k+1}\left(\frac{1}{n}\right)^{k+1}\left(1-\frac{1}{n}\right)^{m-k-1}+\cdots + {m \choose m}\left(\frac{1}{n}\right)^m\left(1-\frac{1}{n}\right)^{m-m}$$
$$= {m \choose k}\left(\frac{1}{n}\right)^k \left(\left(1-\frac{1}{n}\right)^{m-k} + \cdots\right)$$
How do I show that the number in brackets is $\leq 1$?
My calculation:
Let $p=\frac{1}{n}$ and $q=1-p=1-\frac{1}{n}$
\begin{align*} &= {m \choose k}p^kq^{m-k} + {m \choose k+1}p^{k+1}q^{m-k-1}+\cdots + {m \choose m}p^m \\ &= p^k q^{m-k} \left({m \choose k} + {m \choose k+1}\frac{p}{q}+\cdots + {m \choose m}\left(\frac{p}{q}\right)^{m-k} \right) \\ &= p^k q^{m-k} \left(\frac{q}{p}\right)^k \left({m \choose k}\left(\frac{p}{q}\right)^k + {m \choose k+1}\left(\frac{p}{q}\right)^{k+1}+\cdots + {m \choose m}\left(\frac{p}{q}\right)^{m} \right) \\ &\leq p^k q^{m-k} \left(\frac{q}{p}\right)^k \left(1+\frac{p}{q}\right)^{m} = 1\\ \end{align*}
which is obviously true. How do I find better bounds?
To give some more context, I was looking at the randomized load balancing problem (Page 14).