0

This question might seem vague, but what does a one parameter family of conics mean? Is it similar to how we define a one-parameter family of curves?

akad137
  • 115
  • It is indeed an instance of a one-parameter family of curves, as a conic is a curve. –  Dec 23 '19 at 19:22

1 Answers1

1

Different parameters serve different purposes. We can observe how the mathematical nature evolves by varying one particular parameter. See below, several examples with the varying parameters in $\color{red}{red}$:

  • Conics with fixed semi-latus rectum and focus:

    $$r=\frac{\ell}{1+\color{red}{e}\cos \theta}$$

  • Conics with fixed periapsis and focus:

    $$r=\frac{r_p(1+\color{red}{e})}{1+\color{red}{e}\cos \theta}$$

  • Family of conics touching the axes at $(a,0)$ and $(0,b)$:

    $$ \left( \frac{x}{a}+\frac{y}{b}-1 \right)^2 =\frac{2\color{red}{\lambda} xy}{ab} \tag{$\lambda \ne 0$}$$

  • Confocal central conics:

    $$\frac{x^2}{a^2+\color{red}{s}}+\frac{y^2}{b^2+\color{red}{s}}=1$$

  • Confocal parabolae:

    $$y^2=2\color{red}{\lambda} x+\color{red}{\lambda}^2$$

  • Lissajous figures of two signals with the same frequencies:

$$\frac{x^2}{a^2}-\frac{2xy\cos \color{red}{\phi}}{ab}+\frac{y^2}{b^2} =\sin^2 \color{red}{\phi}$$

  • Isoperimetric ellipses (see more on the link here):

    $$x^2+\frac{y^2}{1-\color{red}{k}^2}= \left[ \frac{p}{4E(\color{red}{k})} \right]^2$$

    $$\frac{x^2}{1-\color{red}{k}^2}+y^2= \left[ \frac{p}{4E(\color{red}{k})} \right]^2$$

    enter image description here

Ng Chung Tak
  • 18,990
  • A "real-life" example: https://fr.wikipedia.org/wiki/Parabole_de_sûreté –  Dec 23 '19 at 19:58