If $t>0,t^2, t+\frac{1}{t},t+t^2,\frac{1}{t}+\frac{1}{t^2}$ are all irrational number, $$a_n=n+\left \lfloor \frac{n}{t} \right \rfloor+\left \lfloor \frac{n}{t^2} \right \rfloor,\\ b_n=n+\left \lfloor \frac{n}{t} \right \rfloor +\left \lfloor nt \right \rfloor,\\ c_n=n+\left \lfloor nt \right \rfloor+\left \lfloor nt^2 \right \rfloor, $$ then every positive integer appear exactly once. In other words, the sequences $a_1,b_1,c_1,a_2,b_2,c_2,\cdots$ together contain all the positive integers without repetition. I have checked every integer from $1$ to $10^6$ for $t=2^\frac{1}{4}$: $$a_n=1, 4, 7, 9, 12, 15, 16, 19, 22, 25, 27, 30, 32, 34, 37, 40, 43, 45, 47, 50,\dots \\ b_n=2, 5, 8, 11, 14, 18, 20, 23, 26, 29, 33, 36, 38, 41, 44, 48, 51, 54, 56, 59,\dots \\ c_n=3, 6, 10, 13, 17, 21, 24, 28, 31, 35, 39, 42, 46, 49, 53, 57, 61, 64, 67, 71,\dots $$
PS: This is a special case of following statement:
If $t_1,t_2,\cdots,t_k>0$,and $\forall i \not =j,\frac{t_j}{t_i}$ is irrational, $$a_i(n)=\sum_{j=1}^k{\left \lfloor \frac{t_j}{t_i}n \right \rfloor},i=1,2,\cdots,k,$$
then every positive integer appear exactly once in $a_1(n),\cdots,a_k(n)$.