The question I've been given is this:
Using both sides of this equation:
$$\frac{1}{1-x} = \sum_{n=0}^{\infty}x^n$$
Find an expression for $$\sum_{n=0}^{\infty} n^2x^n$$ Then use that to find an expression for $$\sum_{n=0}^{\infty}\frac{n^2}{2^n}$$
This is as close as I've gotten:
\begin{align*} \frac{1}{1-x} & = \sum_{n=0}^{\infty} x^n \\ \frac{-2}{(x-1)^3} & = \frac{d^2}{dx^2} \sum_{n=0}^{\infty} x^n \\ \frac{-2}{(x-1)^3} & = \sum_{n=2}^{\infty} n(n-1)x^{n-2} \\ \frac{-2x(x+1)}{(x-1)^3} & = \sum_{n=0}^{\infty} n(n-1)\frac{x^n}{x}(x+1) \\ \frac{-2x(x+1)}{(x-1)^3} & = \sum_{n=0}^{\infty} (n^2x + n^2 - nx - n)\frac{x^n}{x} \\ \frac{-2x(x+1)}{(x-1)^3} & = \sum_{n=0}^{\infty} n^2x^n + n^2\frac{x^n}{x} - nx^n - n\frac{x^n}{x} \\ \end{align*}
Any help is appreciated, thanks :)