Taylor series gives $$\frac 1 {(1+x)^2}=1-2x+3x^2-4x^3+\cdots$$
is there a nice expression for $1-4x+9x^2-16x^3 + \cdots ?$
It would be helpful for a problem I am trying to solve.
Taylor series gives $$\frac 1 {(1+x)^2}=1-2x+3x^2-4x^3+\cdots$$
is there a nice expression for $1-4x+9x^2-16x^3 + \cdots ?$
It would be helpful for a problem I am trying to solve.
Here is a way - I'll leave you to do the detailed calculations.
Start with $f(x)=-1+x-x^2+x^3-\dots=-\cfrac 1{1+x}$
Then $f'(x)=1-2x+3x^2-4x^3+\dots$
And $xf'(x)=x-2x^2+3x^3-4x^4+\dots$
So that $\left(xf'(x)\right)'=1-4x+9x^2+-\dots$
I hope the method proves helpful
For $|x| < 1$, we have $$\begin{align} \sum_{n=0}^\infty (n+1)^2 (-x)^n &= \sum_{n=0}^\infty \left(x\frac{d}{dx} + 1 \right)^2 (-x)^n = \left(x\frac{d}{dx} + 1 \right)^2 \sum_{n=0}^\infty (-x)^n\\ &= \left(x\frac{d}{dx} + 1 \right)^2 \frac{1}{1+x} = \frac{d}{dx}\left[ x \frac{d}{dx}\left(\frac{x}{1+x}\right)\right] = \frac{d}{dx}\left[\frac{x}{(1+x)^2}\right]\\ &= \frac{1-x}{(1+x)^3} \end{align} $$
$$ \sum_{n = 0}^\infty (-1)^n(n+1)^2x^n $$ should be exactly what you need, if I understand your question.
HINT: $$1-4x+9x^2-16x^3 + \cdots = \sum_{n=0}^{\infty} (-1)^n (n+1)^2 x^n = \sum_{n=0}^{\infty} (-1)^n (n^2+2n+1) x^n$$