Test the convergence of $$ \sum_{n=1}^{\infty}\left(\frac{n^2}{2^n}+\frac{1}{n^2}\right) $$
$$ \frac{u_{n+1}}{u_{n}}=\frac{\frac{(n+1)^2}{2^{n+1}}+\frac{1}{(n+1)^2}}{\frac{n^2}{2^{n}}+\frac{1}{n^2}} $$
$$ \lim_{n\to\infty}\frac{u_{n+1}}{u_{n}}=\lim_{n\to\infty}\frac{\frac{(n+1)^2}{2^{n+1}}+\frac{1}{(n+1)^2}}{\frac{n^2}{2^{n}}+\frac{1}{n^2}} $$