Evaluate $\displaystyle \lim_{x\to0} \frac{\cos (\sin x) - \cos x}{x^4}$
The answer stated is $\displaystyle {1 \over 6}$.
What I've tried: $$\displaystyle \lim_{x\to0} \frac{\cos (\sin x) - \cos x}{x^4}$$
$$=\displaystyle \lim_{x\to0} \frac{\cos (\sin x) -1+1- \cos x}{x^4}$$
$$=\displaystyle \lim_{x\to0} \frac{1- \cos x}{x^4} - \frac {1-\cos (\sin x)}{x^4}$$
$$=\displaystyle \lim_{x\to0} \frac{2 \sin^2(\frac {x}{2})}{x^4} - \frac {2 \sin^2(\frac {\sin x}{2})}{x^4}$$
$$=\displaystyle \lim_{x\to0} \left(\frac{\sin(\frac {x}{2})}{x} \right)^2. \left( \dfrac{1}{2x^2} \right) - \frac {2 \sin^2(\frac {\sin x}{2})}{x^4}$$
I'm not sure how I can evaluate the limit by proceeding this way. All help will be appreciated.
P.S. I'd prefer not using L'Hôpital's rule, it can get really messy.
EDIT: I should have mentioned that I would prefer if the solution does not use taylor series approximations (or any approximations) for that matter.