Problem :
$\lim\limits_{x \to 0} \frac{x^n}{\cos(\sin x) -\cos x}=l$ value of $n$ such that $l$ is non zero finite real number. Find value of $l$.
My approach :
$$\lim_{x \to 0} \frac{x^n}{\cos(\sin x) -\cos x}=l$$
$$ \Rightarrow \lim_{x \to 0} \frac{x^n}{-2\sin(\frac{\sin x+x}{2})\sin(\frac{\sin x-x}{2})} =l $$
Please suggest how to move further , will be of great help thanks.