3

To find limit of $\lim_{x\to 0}\frac {\cos(\sin x) - \cos x}{x^4} $. I differentiated it using L Hospital's rule. I got $$\frac{-\sin(\sin x)\cos x + \sin x}{4x^3}\text{.}$$ I divided and multiplied by $\sin x$. Since $\lim_{x\to 0}\frac{\sin x}{x} = 1$, thus I got $\frac{1-\cos x}{4x^2}$.On applying standard limits, I get answer $\frac18$. But correct answer is $\frac16$. Please help.

user2369284
  • 2,231

3 Answers3

4

Without L'Hôpital

The expansions $\sin(x) = x - \frac{x^3}{6} + O(x^5)$ and $\cos(u) = 1 - \frac{u^2}{2} + \frac{u^4}{24} + O(u^6)$ combine joyfully to give $$ \cos(\sin x) - \cos(x) = \left(1 - \frac{x^2}{2} + \frac{5x^4}{24}\right) - \left(1-\frac{x^2}{2} + \frac{x^4}{24}\right) + O(x^5) $$ so finally, $$ \lim_{x\to 0} \frac{\cos(\sin x) - \cos(x)}{x^4} = \frac{5}{24}-\frac{1}{24} = \frac{1}{6}. $$

Siméon
  • 10,664
  • 1
  • 21
  • 54
3

Using Prosthaphaeresis Formulas,

$$\cos(\sin x)-\cos x=2\sin\frac{x-\sin x}2\sin\frac{x+\sin x}2$$

So, $$\frac{\cos(\sin x)-\cos x}{x^4}=2\frac{\sin\frac{x-\sin x}2}{\frac{x-\sin x}2}\frac{\sin\frac{x+\sin x}2}{\frac{x+\sin x}2}\cdot\frac{x-\sin x}{x^3}\cdot\frac{x+\sin x}x\cdot\frac14$$

We know, $\lim_{h\to0}\frac{\sin h}h=1$

$$\text{Apply L'Hospital's Rule on }\lim_{x\to0}\frac{x-\sin x}{x^3}$$

$$\text{and we get }\lim_{x\to0}\frac{x+\sin x}x=1+\lim_{x\to0}\frac{\sin x}x$$

0

We have that

$$\frac{\cos x-1+\frac{x^2}2}{x^4} \to \frac1{24} \tag 1$$

therefore

$$\frac {\cos(\sin x) - \cos x}{x^4}=\frac{\sin^4 x}{x^4}\frac {\cos(\sin x) - 1+\frac{\sin^2 x}2}{\sin^4 x}-\frac{\cos x-1+\frac{x^2}2}{x^4}+\frac12\frac{x^2-\sin^2 x}{x^4}$$

therefore the given limit is equivalent to

$$\frac12\frac{x^2-\sin^2 x}{x^4}=\frac12\frac{x+\sin x}{x}\frac{x-\sin x}{x^3}\to \frac12 \cdot 2 \cdot \frac16=\frac16$$

using that $\frac{x-\sin x}{x^3}\to \frac16$ as shown here.


Proof of $(1)$, using that $\cos x=1-2\sin^2 \left(\frac x 2\right)$

$$\frac{\cos x-1+\frac{x^2}2}{x^4}=\frac{\frac{x^2}2-2\sin^2 \left(\frac x 2\right)}{x^4}=\frac18\frac{\left(\frac x 2\right)^2-\sin^2 \left(\frac x 2\right)}{\left(\frac x 2\right)^4} \to \frac1{24}$$

by the same previous result.

user
  • 154,566