14

I know that

$$ \lim_{n\to\infty}{{2n}\choose{n}}^\frac{1}{n} = 4 $$ but I have no Idea how to show that; I think it has something to do with reducing ${n}!$ to $n^n$ in the limit, but don't know how to get there. How might I prove that the limit is four?

azimut
  • 22,696

7 Answers7

22

Hint: By induction, show that for $n\geq 2$ $$\frac{4^n}{n+1} < \binom{2n}{n} < 4^n.$$

azimut
  • 22,696
17

The term ${2n\choose n}$ occurs as biggest of $2n+1$ positive summands in expanding $(1+1)^{2n}$, which directly shows $\frac{4^n}{2n+1}\le {2n\choose n}\le 4^n$. From this the claim follows by using $\sqrt[n]n\to 1$.

  • 1
    Simple but effective observation (+1) – robjohn Mar 05 '13 at 01:33
  • Yes, but it only shows that $0 \le \lim_{n \rightarrow \infty} \binom{2n}{n}^{1/n} \le 4$. – vonbrand Mar 05 '13 at 17:31
  • 2
    @vonbrand No, it shows $\frac 4{\lim \sqrt[n]{2n+1}}\le \ldots \le 4$, hence equality as required. Note that the well-known $\sqrt[n] n\to 1$ also implies $\sqrt[n] {2n+1}\to 1$. Actually, I just wanted to avoid the big Stirling gun because this "one step" using the immediate defintion of binomial coeffivient works. – Hagen von Eitzen Mar 05 '13 at 21:09
  • Something is very wrong. My own computation shows the limit is $4 \pi^{-1/8}$, as do other results here. – vonbrand Mar 05 '13 at 22:05
  • @vonbrand Which limit is $4\pi^{-1/8}$ and which other results here show that? – Hagen von Eitzen Mar 05 '13 at 22:20
12

Use Stirling formula $$n! \sim \sqrt{2 \pi n} \left(\dfrac{n}e \right)^n$$ This gives us that $$\dbinom{2n}n \sim \dfrac{4^n}{\sqrt{\pi n}}$$ Now conclude that $$\lim_{n \to \infty} \dbinom{2n}n^{1/n} = 4$$

5

If we know1 that for a sequence $(a_n)$ of positive real numbers we have $$\lim_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} \frac{a_{n+1}}{a_n},$$ providing the limit on the right hand side exists, we can use this for $a_n=\binom{2n}n$. We get $$\lim_{n\to\infty} \frac{\binom{2n+2}{n+1}}{\binom{2n}n} = \lim_{n\to\infty} \frac{(2n+1)(2n+2)}{(n+1)^2} = 4.$$

Notice that this approach is not that different from taking a logarithm and applying Stolz-Cesaro theorem. (Which is actually a possible way the result about $\sqrt[n]{a_n}$.)


1This result is proved in some other posts on this site, for example: Limit of ${a_n}^{1/n}$ is equal to $\lim_{n\to\infty} a_{n+1}/a_n$, Convergence of Ratio Test implies Convergence of the Root Test, How to show that $\lim_{n \to \infty} a_n^{1/n} = l$?, Elementary way to show $\lim_{n \rightarrow \infty} \sqrt[n]{a_n} = \lim_{n \rightarrow \infty} \frac{a_{n+1}}{a_n}$?.

5

Hint: $$ \begin{align} \binom{2n}{n} &=\frac{2n(2n-1)}{n^2}\frac{(2n-2)(2n-3)}{(n-1)^2}\frac{(2n-4)(2n-5)}{(n-2)^2}\cdots\frac{4\cdot3}{2^2}\frac{2\cdot1}{1^2}\\ &=2^n\frac{2n-1}{n}\frac{2n-3}{n-1}\frac{2n-5}{n-2}\cdots\frac{3}{2}\frac{1}{1}\\ &=4^n\frac{n-1/2}{n}\frac{n-3/2}{n-1}\frac{n-5/2}{n-2}\cdots\frac{3/2}{2}\frac{1/2}{1}\tag{1}\\ &\ge4^n\frac{n-1}{n}\frac{n-2}{n-1}\frac{n-3}{n-2}\cdots\frac{1}{2}\cdot1/2\\ &=4^n\frac1{2n}\tag{2} \end{align} $$ $(1)$ and $(2)$ show that $$ \frac1{2n}4^n\le\binom{2n}{n}\le4^n\tag{3} $$

robjohn
  • 345,667
4

You could use Stirling’s approximation:

$$\lim_{n\to\infty}\frac{n!}{\sqrt{2n\pi}(n/e)^n}=1\;.$$

Then

$$\binom{2n}n=\frac{(2n)!}{n!^2}\approx\frac{\sqrt{4n\pi}(2n/e)^{2n}}{2n\pi(n/e)^{2n}}=\frac{4^n}{\sqrt{n\pi}}\;,$$

so $$\binom{2n}n^{1/n}\approx\frac4{(\pi n)^{1/n}}\;.$$

I’ll let you fill in the details to show that $\approx$ here can be replaced by $\sim$, meaning that the ratio tends to $1$.

Brian M. Scott
  • 616,228
1

\begin{align} \lim_{n\to\infty}\log\left(\sqrt[n]{2n \choose n}\right)&=\lim_{n\to\infty}\log\left(\sqrt[n]{\frac{2n!}{n!n!}}\right)\\ &=\lim_{n\to\infty}\log\left(\sqrt[n]{\frac{\prod_{k=1}^n(n+k)}{\prod_{k=1}^n k}}\right)\\ &=\lim_{n\to\infty}\frac{\sum_{k=1}^n\log\left(\cfrac{n+k}{k}\right)}{n}\\ &=\lim_{n\to\infty}\frac{\sum_{k=1}^n\log\left(1+\cfrac{n}{k}\right)}{n}\\ &=\int_0^1 \log\left(1+\frac1x\right)dx\\ &=\int_0^1 (\log(1+x)-\log x)dx\\ &=\left[(1+x)\log x(1+x)-x\log x\right]_0^1\\ &=2\log2=\log4\\ \therefore \lim_{n\to\infty}\sqrt[n]{2n \choose n}&=4 \end{align}

Kay K.
  • 9,931