Evaluate $$\lim_{n\rightarrow \infty}\frac{1}{2n}\cdot \ln \binom{2n}{n}.$$
$\underline{\bf{My\;\;Try}}::$ Let $\displaystyle y = \lim_{n\rightarrow \infty}\frac{1}{2n}\cdot \ln \binom{2n}{n} = \lim_{n\rightarrow \infty}\frac{1}{2n}\cdot \ln \left(\frac{(n+1)\cdot (n+2)\cdot (n+3)\cdots (n+n)}{(1)\cdot (2)\cdot (3)\cdots (n)}\right)$
$\displaystyle y = \lim_{n\rightarrow \infty}\frac{1}{2n}\cdot \left\{\ln \left(\frac{n+1}{1}\right)+\ln \left(\frac{n+2}{2}\right)+\ln \left(\frac{n+3}{3}\right)+\cdots+\ln \left(\frac{n+n}{n}\right)\right\}$
$\displaystyle y = \lim_{n\rightarrow \infty}\frac{1}{2n}\cdot \sum_{r=1}^{n}\ln \left(\frac{n+r}{r}\right) = \lim_{n\rightarrow \infty}\frac{1}{2n}\cdot \sum_{r=1}^{n}\ln \left(\frac{1+\frac{r}{n}}{\frac{r}{n}}\right)$
Now Using Reinman Sum
$\displaystyle y = \frac{1}{2}\int_{0}^{1}\ln \left(\frac{x+1}{x}\right)dx = \frac{1}{2}\int_{0}^{1}\ln (x+1)dx-\frac{1}{2}\int_{0}^{1}\ln (x)dx = \ln (2)$
My Question is , Is there is any method other then that like Striling Approximation OR Stolz–Cesàro theorem OR Ratio Test
If yes then please explain here
Thanks