$\newcommand{\+}{^{\dagger}}%
\newcommand{\angles}[1]{\left\langle #1 \right\rangle}%
\newcommand{\braces}[1]{\left\lbrace #1 \right\rbrace}%
\newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}%
\newcommand{\dd}{{\rm d}}%
\newcommand{\isdiv}{\,\left.\right\vert\,}%
\newcommand{\ds}[1]{\displaystyle{#1}}%
\newcommand{\equalby}[1]{{#1 \atop {= \atop \vphantom{\huge A}}}}%
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}%
\newcommand{\fermi}{\,{\rm f}}%
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}%
\newcommand{\ic}{{\rm i}}%
\newcommand{\imp}{\Longrightarrow}%
\newcommand{\ket}[1]{\left\vert #1\right\rangle}%
\newcommand{\pars}[1]{\left( #1 \right)}%
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}%
\newcommand{\root}[2][]{\,\sqrt[#1]{\,#2\,}\,}%
\newcommand{\sech}{\,{\rm sech}}%
\newcommand{\sgn}{\,{\rm sgn}}%
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}%
\newcommand{\verts}[1]{\left\vert #1 \right\vert}%
\newcommand{\yy}{\Longleftrightarrow}$
For $N \gg 1$, ${{\rm d}\ln\left(N!\right) \over {\rm d}N} \approx \ln\left(N\right)$. Consider $N$ and/or $n$ as real variables !!!.
$$
\color{#0000ff}{\large\lim_{n \to \infty}{1 \over 2n}\,\left\{\ln\left(\left[2n\right]!\right) - 2\ln\left(n!\right)\right\}}
=
\lim_{n \to \infty}{2\ln\left(2n\right) -2\ln\left(n\right)\over 2} = \color{#0000ff}{\large\ln\left(2\right)}
$$
Otherwise,
\begin{align}
&\lim_{x \to \infty}{\ln\Gamma\pars{2x + 1} - 2\ln\Gamma\pars{x + 1} \over 2x}
=
\lim_{x \to \infty}{2\Psi\pars{2x + 1} - 2\Psi\pars{x + 1} \over 2}
\\[3mm]&=
\lim_{x \to \infty}\bracks{\Psi\pars{2x} + {1 \over 2x} - \Psi\pars{x} + {1 \over x}}
=
\lim_{x \to \infty}\bracks{\Psi\pars{2x} - \Psi\pars{x}}
\end{align}
Since $\Psi\pars{z} \sim \ln\pars{z}$ when $\verts{z} \gg 1$, we'll have $\Psi\pars{2x} - \Psi\pars{x} \sim \ln\pars{2x} - \ln\pars{x} = \ln\pars{2}$.
$\Gamma$ and $\Psi$ are the ${\it Gamma}$ and ${\it Digamma}$ functions, respectively: $\Psi\pars{z} \equiv \totald{\ln\pars{\Gamma\pars{z}}}{z}$.
${\large\tt ADENDUM:}$
Since $\ds{\totald{\ln\pars{x}}{x} = {1 \over x}}$, the ${\large\tt\ln}$ function varies slowly when $x \gg 1$. Then, for large $N$:
$$
\left.\totald{\ln\pars{x}}{x}\right\vert_{x\ =\ N} \approx
{\ln\pars{\bracks{N + 1}!} - \ln\pars{N!} \over \pars{N + 1} - N} = \ln\pars{N + 1}
\approx \ln\pars{N}\,,\qquad N \gg 1
$$