Suppose that $a_n > 0$, $n \in \mathbb{N}$. Suppose that $$\lim_{n \to \infty} a_{n+1}/a_n =l$$.
How to show that
$$\lim_{n \to \infty} a_n^{1/n} = l \;?$$
My solution: let $$b_n = a_{n+1}/a_n$$
Then
$$b_1 b_2 \cdots b_{n-1} = a_{n}/a_1$$.
Do we have $\lim_{n \to \infty} (b_1 \cdots b_{n-1})^{1/n} = l\;?$