$\lim_{n \to \infty} (\frac{(n+1)(n+2)\dots(3n)}{n^{2n}})^{\frac{1}{n}}$ is equal to :
- $\frac{9}{e^2}$
- $3 \log3−2$
- $\frac{18}{e^4}$
- $\frac{27}{e^2}$
My attempt :
$\lim_{n \to \infty} (\frac{(n+1)(n+2)\dots(3n)}{n^{2n}})^{\frac{1}{n}}$
$=\lim_{n \to \infty} (\frac{(n+1)(n+2)\dots(n+2n)}{n^{2n}})^{\frac{1}{n}}$
$=\lim_{n \to \infty} (\frac{{n^{2n}}\{(1+1/n)(1+2/n)\dots(1+2n/n)\}}{n^{2n}})^{\frac{1}{n}}$
$=\lim_{n \to \infty} (\frac{{n^{2n}}\{(1+1/n)(1+2/n)\dots(1+2)\}}{n^{2n}})^{\frac{1}{n}}$
$=\lim_{n \to \infty} (\frac{{n^{2n}}\{(1+1/n)(1+2/n)\dots(3)\}}{n^{2n}})^{\frac{1}{n}}$
$=\lim_{n \to \infty} (\{(1+1/n)(1+2/n)\dots(3)\})^{\frac{1}{n}}$
I'm stuck here.
Can you please explain?