6

Show that $2 xy < x^2 + y^2$ for $x$ is not equal to $y$.

Man
  • 169

3 Answers3

20

Note that $(x-y)^2 \ge 0$ for all real numbers $x$ and $y$, with equality only when $x=y$. Now expand $(x-y)^2$.

A surprisingly large number of useful inequalities follow from the simple observation that any square is non-negative.

André Nicolas
  • 507,029
11

If $x\neq y$ then without loss of generality we can assume that $x>y$ $x-y>0\Rightarrow (x-y)^2>0\Rightarrow x^2-2xy+y^2>0\Rightarrow x^2+y^2>2xy$

Siméon
  • 10,664
  • 1
  • 21
  • 54
Adi Dani
  • 16,949
2

Let $$y=x+a$$ $$a \neq 0$$ then $$2xy=2x(x+a)=2x^2+2ax<2x^2+2ax+a^2$$

see that the difference is exactly 'a' squared.

galmeida
  • 151