prove: if $x,y\in\mathbb{R}$ then $2xy\le x^2+y^2$
if one or both of $x,y$ is $0$ or one is negative, the result follows. if both are negative the negatives cancel and it is the same as if they were both positive. both positive or both negative:
$2xy\le x^2+y^2\Leftrightarrow 2y\le{x+{y^2\over x}}\Leftrightarrow 2\le {x\over y}+{y\over x}$.$\space\space$if $x=y$ the result follows with ${x\over y}+{y\over x}=2$. if $x\gt y\space$ then $x=y+i,i\in\mathbb{R_+} \space$ and $\space{x\over y}+{y\over x}={{y+i}\over y}+{y\over {y+i}}={y\over y}+{i\over y}+{y\over {y+i}}\gt {y\over y}+{i\over {y+i}}+{y\over {y+i}}$ $=1+{{i+y}\over{i+y}}=2$.$\space\space$similar argument can be used for $y\gt x$.
Is this proof valid for real numbers? especially irrational numbers. thanks.