$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\on}[1]{\operatorname{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\bbox[5px,#ffd]{\int_{0}^{\infty}{\ln^{2}\pars{x}
\over \pars{1 - x^{2}}^{2}}\,\dd x}
\,\,\,\stackrel{x^{2}\ \mapsto\ x}{=}\,\,\,
{1 \over 8}\int_{0}^{\infty}{x^{-1/2}\,\ln^{2}\pars{x}
\over \pars{1 - x}^{2}}\,\dd x
\\[5mm] = &\
\left.{1 \over 8}\partiald[2]{}{\nu}\int_{0}^{\infty}{x^{-1/2}\pars{x^{\nu} - 1}
\over \pars{1 - x}^{2}}\,\dd x
\,\right\vert_{\ \nu\ =\ 0}
\\[5mm] = &\
\left.{1 \over 8}\partiald[2]{}{\nu}
\int_{0}^{\infty}
{x^{\pars{\nu + 1/2} - 1}\,\,\, - x^{1/2 - 1} \over \pars{1 - x}^{2}}\,\dd x
\,\right\vert_{\ \nu\ =\ 0}
\end{align}
\begin{align}
&{1 \over \pars{1 - x}^{2}} =
\sum_{k = 0}^{\infty}{-2 \choose k}\pars{-x}^{k} =
\sum_{k = 0}^{\infty}{k + 1 \choose k}\pars{-1}^{k}
\pars{-x}^{k}
\\[5mm] = &\
\sum_{k = 0}^{\infty}
\color{red}{\pars{1 + k}\Gamma\pars{1 + k}\expo{\ic\pi k}}{\pars{-x}^{k} \over k!}
\end{align}
\begin{align}
&\bbox[5px,#ffd]{\int_{0}^{\infty}{\ln^{2}\pars{x}
\over \pars{1 - x^{2}}^{2}}\,\dd x} =
{1 \over 8}\partiald[2]{}{\nu}
\bracks{\Gamma\pars{\nu + {1 \over 2}}
\pars{{1 \over 2} - \nu}\Gamma\pars{{1 \over 2} - \nu}
\expo{-\ic\pi\pars{\nu + 1/2}}}_{\ \nu\ =\ 0}
\\[5mm] = &\
-\,{\pi \over 8}\ic\,\partiald[2]{}{\nu}
\bracks{\pars{{1 \over 2} - \nu}\bracks{1 -
\ic\tan\pars{\pi\nu}}}_{\ \nu\ =\ 0}
\\[5mm] = &\
{\pi \over 8}\,\partiald[2]{}{\nu}
\bracks{\pars{\nu - {1 \over 2}}\tan\pars{\pi\nu}}
_{\ \nu\ =\ 0} =
{\pi \over 8}\,\partiald[2]{}{\nu}
\pars{\pi\nu^{2}}_{\ \nu\ =\ 0}
\\[5mm] = &\
\bbx{\pi^{2} \over 4}\\ &
\end{align}