Using @Fimpellizieri 's brilliant observation on @Dahaka 's ingenious post:
\begin{equation}
\frac{d\,[f(x)]^a}{dx}=\frac{d\,f^a}{df}\frac{d\,f}{dx}=af^{a-1}\cdot f'=a\frac{f'}{f^{1-a}}\tag{1}
\end{equation}
we find the integral in the question belongs to a family that can be found from using $(1)$.
First consider $I=\int\frac{1+x^2}{(1-x^2)^{2}}dx$ and let $f(x)=x^{-1}-x$, $f'(x)=-x^{-2}-1=-1\cdot(x^{-2}+1)$, $a=-1$. Now by $(1)$
$$\frac{d\,[f(x)]^{-1}}{dx}=-1\cdot\frac{(-1\cdot(x^{-2}+1))}{(x^{-1}-x)^{1-(-1)}}
=\frac{(x^{-2}+1)}{(x^{-1}-x)^{2}}=\frac{1+x^2}{(1-x^2)^2}$$
and so
$$I=\int \frac{(1+x^{2})}{(1-x^{2})^{2}}dx=\int d\,([f(x)]^{-1})=[f(x)]^{-1}+c=(x^{-1}-x)^{-1}+c=\frac{x}{1-x^2}+c$$
For the next let $f(x)=x^{-2}-x^{2}$, $f'(x)=-2x^{-3}-2x=-2\cdot(x^{-3}+x)$, $a=-\frac{1}{2}$. Now by $(1)$
$$\frac{d\,[f(x)]^{-1/2}}{dx}=-\frac{1}{2}\cdot\frac{(-2\cdot(x^{-3}+x))}{(x^{-2}-x^{2})^{1-(-\frac{1}{2})}}
=\frac{(x^{-3}+x)}{(x^{-2}-x^{2})^{3/2}}=\frac{1+x^4}{(1-x^4)^{3/2}}$$
and so
$$I=\int \frac{1+x^4}{(1-x^4)^{3/2}}dx=\int d\,([f(x)]^{-1/2})=[f(x)]^{-1/2}+c=(x^{-2}-x^{2})^{-1/2}+c=\frac{x}{(1-x^4)^{1/2}}+c$$
For the next in the pattern we have
\begin{align*}
I&=\int\frac{1+x^6}{(1-x^6)^{4/3}}dx=\int\frac{(1+x^6)/x^4}{(1-x^6)^{4/3}/x^4}dx=\int\frac{x^{-4}+x^2}{(x^{-3}-x^3)^{4/3}}dx\\
&=\int d\left((x^{-3}-x^3)^{-1/3}\right)=(x^{-3}-x^3)^{-1/3}+c=\frac{x}{(1-x^6)^{1/3}}+c
\end{align*}
In general we have (with $f(x)=x^{-n}-x^{n}$, $f'(x)=-n\cdot(x^{-(n+1)}+x^{n-1})$, $a=-\frac{1}{n}$)
\begin{align*}
I&=\int\frac{1+x^{2n}}{(1-x^{2n})^{(n+1)/n}}dx=\int\frac{(1+x^{2n})/x^{(n+1)}}{(1-x^{2n})^{(n+1)/n}/x^{(n+1)}}dx=\int-\frac{1}{n}\cdot\frac{\left(-n\cdot(x^{-{(n+1)}}+x^{n-1})\right)}{(x^{-n}-x^{n})^{(n+1)/n}}dx\\
&=\int d\left((x^{-n}-x^n)^{-1/n}\right)=(x^{-n}-x^n)^{-1/n}+c=\frac{x}{(1-x^{2n})^{1/n}}+c
\end{align*}
giving the general result:
\begin{equation}
I=\int\frac{1+x^{2n}}{(1-x^{2n})^{(n+1)/n}}dx=\frac{x}{(1-x^{2n})^{1/n}}+c
\end{equation}
$${\left( f^\alpha\right)}' = \alpha\cdot \frac {f'}{{(f)}^{1-\alpha}}.$$
In other words, suppose your denominator is some expression to some weird power. If you can manipulate the expression so as to make the numerator be the derivative of what's being 'powered' in the denominator, you're good.
– Fimpellizzeri Jul 21 '18 at 19:13