Due to the log-convexity of $\Gamma(x)$, we have
$$
\begin{align}
\Gamma\!\left(n+\tfrac32\right)
&\le\Gamma(n+1)^{1/2}\Gamma(n+2)^{1/2}\\
&=n!\sqrt{n+1}\tag1
\end{align}
$$
and
$$
\begin{align}
\Gamma\!\left(n+\tfrac32\right)
&\ge\frac{\Gamma(n+1)^{3/2}}{\Gamma(n)^{1/2}}\\
&=n^{1/2}\Gamma(n+1)\\[9pt]
&=n!\sqrt{n}\tag2
\end{align}
$$
Therefore, Cauchy-Schwarz says
$$
\begin{align}
r^{-1/2}e^{-r}\sum_{n=0}^\infty\frac{\Gamma\!\left(n+\frac32\right)r^n}{(n!)^2}
&\le r^{-1/2}e^{-r}\sum_{n=0}^\infty\frac{\sqrt{n+1}\,r^n}{n!}\\
&\le r^{-1/2}\left[e^{-r}\sum_{n=0}^\infty\frac{r^n}{n!}\right]^{1/2}\left[e^{-r}\sum_{n=0}^\infty\frac{(n+1)\,r^n}{n!}\right]^{1/2}\\[9pt]
&=r^{-1/2}(r+1)^{1/2}\tag3
\end{align}
$$
and
$$
\begin{align}
r^{-1/2}e^{-r}\sum_{n=0}^\infty\frac{\Gamma\!\left(n+\frac32\right)r^n}{(n!)^2}
&\ge r^{-1/2}e^{-r}\sum_{n=0}^\infty\frac{\sqrt{n}\,r^n}{n!}\\
&\ge r^{-1/2}\left[e^{-r}\sum_{n=0}^\infty\frac{n r^n}{n!}\right]^{3/2}\left[e^{-r}\sum_{n=0}^\infty\frac{n^2\,r^n}{n!}\right]^{-1/2}\\[9pt]
&=r^{1/2}\left(r+1\right)^{-1/2}\tag4
\end{align}
$$
The Squeeze Theorem along with $(3)$ and $(4)$ shows that
$$
\lim_{r\to\infty}r^{-1/2}e^{-r}\sum_{n=0}^\infty\frac{\Gamma\!\left(n+\frac32\right)r^n}{(n!)^2}=1\tag5
$$
This is a different limit than asked for, but it shows that the limit in the question diverges to $\infty$.
Further Estimates
It can easily be shown that for integer $k\ge0$,
$$
\begin{align}
e^{-r}\sum_{n=0}^\infty\frac{\Gamma\!\left(n+1+k\right)r^n}{(n!)^2}
&=e^{-r}\sum_{n=0}^\infty\frac{\overbrace{(n+1)(n+2)\cdots(n+k)}^{n^k+\frac{k(k+1)}2n^{k-1}+O\left(n^{k-2}\right)}r^n}{n!}\\
&=e^{-r}\sum_{n=0}^\infty\frac{\overbrace{n(n-1)\cdots(n-k+1)}^{n^k-\frac{k(k-1)}2n^{k-1}+O\left(n^{k-2}\right)}r^n}{n!}\\
&+k^2e^{-r}\sum_{n=0}^\infty\frac{\overbrace{n(n-1)\cdots(n-k+2)}^{n^{k-1}+O\left(n^{k-2}\right)}r^n}{n!}\\
&+O\Bigg(e^{-r}\sum_{n=0}^\infty\frac{\overbrace{n(n-1)\cdots(n-k+3)}^{n^{k-2}+O\left(n^{k-3}\right)}r^n}{n!}\Bigg)\\[9pt]
&=e^{-r}\sum_{n=k}^\infty\frac{r^n}{(n-k)!}\\
&+k^2e^{-r}\sum_{n=k-1}^\infty\frac{r^n}{(n-k+1)!}\\
&+O\left(e^{-r}\sum_{n=k-2}^\infty\frac{r^n}{(n-k+2)!}\right)\\[6pt]
&=r^k\left(1+\frac{k^2}r+O\left(\frac1{r^2}\right)\right)
\end{align}
$$
Plugging in $k=\frac12$ gives
$$
r^{1/2}e^{-r}\sum_{n=0}^\infty\frac{\Gamma\!\left(n+\frac32\right)r^n}{(n!)^2}=r+\frac14+O\left(\frac1r\right)
$$