$$ \int_0^{\infty } \frac{\log (x)}{e^x+1} \, dx = -\frac{1}{2} \log ^2(2) $$
Anyone an idea on how to prove this?
$$ \int_0^{\infty } \frac{\log (x)}{e^x+1} \, dx = -\frac{1}{2} \log ^2(2) $$
Anyone an idea on how to prove this?
By the recursive relation $\Gamma(x+1)=x\Gamma(x)$, we get $$ \small{\log(\Gamma(x))=\log(\Gamma(n+x))-\log(x)-\log(x+1)-\log(x+2)-\dots-\log(x+n-1)}\tag{1} $$ Differentiating $(1)$ with respect to $x$, evaluating at $x=1$, and letting $n\to\infty$ yields $$ \begin{align} \frac{\Gamma'(1)}{\Gamma(1)}&=\log(n)+O\left(\frac1n\right)-\frac11-\frac12-\frac13-\dots-\frac1n\\ &\to-\gamma\tag{2} \end{align} $$ Next, apply $(2)$ to the following: $$ \begin{align} \int_0^\infty\log(t)\;e^{-t}\;\mathrm{d}t &=\left.\frac{\mathrm{d}}{\mathrm{d}x}\int_0^\infty t^x\;e^{-t}\;\mathrm{d}t\right]_{x=0}\\ &=\Gamma'(1)\\ &=-\gamma\tag{3} \end{align} $$ Then, a simple change of variables yields $$ \int_0^\infty\log(t)\;e^{-nt}\;\mathrm{d}t=-\frac{\gamma+\log(n)}{n}\tag{4} $$ Since $\dfrac{1}{e^t+1}=e^{-t}-e^{-2t}+e^{-3t}-e^{-4t}+\dots$, by applying $(4)$ to this result, we have that $$ \begin{align} \int_0^\infty\frac{\log(t)}{e^t+1}\mathrm{d}t &=\int_0^\infty\sum_{n=1}^\infty(-1)^{n-1}\log(t)\;e^{-nt}\;\mathrm{d}t\\ &=\sum_{n=1}^\infty(-1)^n\frac{\gamma+\log(n)}{n}\\ &=-\frac12\log(2)^2\tag{5} \end{align} $$
The fact that $\frac{\mathrm{d}}{\mathrm{d}x}\log(\Gamma(x))=\log(x)+O\left(\frac1x\right)$ relies on the log-convexity of $\Gamma(x)$; that is, $\frac{\mathrm{d}}{\mathrm{d}x}\log(\Gamma(x))$ is monotonically increasing. By the recursive relation for $\Gamma(x)$, we have that $$ \log(\Gamma(x))-\log(\Gamma(x-1))=\log(x-1)\tag{6} $$ and that $$ \log(\Gamma(x+1))-\log(\Gamma(x))=\log(x)\tag{7} $$ The Mean Value Theorem and $(6)$ imply that $\frac{\mathrm{d}}{\mathrm{d}x}\log(\Gamma(\xi_1))=\log(x{-}1)$ for some $\xi_1{\in}(x{-}1,x)$.
The Mean Value Theorem and $(7)$ imply that $\frac{\mathrm{d}}{\mathrm{d}x}\log(\Gamma(\xi_2))=\log(x)$ for some $\xi_2{\in}(x,x{+}1)$.
By the monotonicity of $\frac{\mathrm{d}}{\mathrm{d}x}\log(\Gamma(x))$, we get that $$ \log(x-1)\le\frac{\mathrm{d}}{\mathrm{d}x}\log(\Gamma(x))\le\log(x)\tag{8} $$ Since $\log(x)-\log(x-1)=O\left(\frac1x\right)$, $(8)$ implies that $$ \frac{\mathrm{d}}{\mathrm{d}x}\log(\Gamma(x))=\log(x)+O\left(\frac1x\right)\tag{9} $$
If $\frac{\mathrm{d}^2}{\mathrm{d}x^2}f(x)\ge0$, then $f$ is convex at $x$. Thus, if $\dfrac{f(x)f''(x)-f'(x)^2}{f(x)^2}=\frac{\mathrm{d}^2}{\mathrm{d}x^2}\log(f(x))\ge0$, then $f$ is log-convex. So we need to show that $\Gamma(x)\Gamma''(x)\ge\Gamma'(x)^2$. That is, $$ \int_0^\infty t^{x-1}\;e^{-t}\;\mathrm{d}t \int_0^\infty\log(t)^2\;t^{x-1}\;e^{-t}\;\mathrm{d}t \ge \left(\int_0^\infty\log(t)\;t^{x-1}\;e^{-t}\;\mathrm{d}t\right)^2\tag{10} $$ Dividing both sides of $(10)$ by $\int_0^\infty t^{x-1}\;e^{-t}\;\mathrm{d}t$, $(10)$ becomes $$ \int\log(t)^2\;\mathrm{d}\mu \ge \left(\int\log(t)\;\mathrm{d}\mu\right)^2\tag{11} $$ where $\mathrm{d}\mu=\dfrac{t^{x-1}\;e^{-t}\;\mathrm{d}t}{\int_0^\infty t^{x-1}\;e^{-t}\;\mathrm{d}t}$ is a unit measure on $[0,\infty)$. Thus, $(11)$ is simply Jensen's inequality.
Strictly speaking:
Note that $$ \log(t)^2 + a^2 \ge 2a\log(t)\tag{12} $$ with equality if and only if $\log(t)=a$. Integrating $(12)$ w.r.t. the unit measure $\mathrm{d}\mu$, yields $$ \int\log(t)^2\;\mathrm{d}\mu + a^2 \ge 2a\int\log(t)\;\mathrm{d}\mu\tag{13} $$ with equality in $(13)$ if and only if $\log(t)=a$ a.e. $\mathrm{d}\mu$. Let $a=\int\log(t)\;\mathrm{d}\mu$, then $(13)$ becomes $$ \int\log(t)^2\;\mathrm{d}\mu \ge \left(\int\log(t)\;\mathrm{d}\mu\right)^2\tag{14} $$ with equality if and only if $\log(t)$ is constant a.e. $\mathrm{d}\mu$. Since the $\mathrm{d}\mu$ in $(11)$ is absolutely continuous and $\log(t)$ is strictly increasing on $(0,\infty)$, the inequality in $(11)$ is strict. Therefore, $\Gamma$ is strictly log-convex.
Start with $J(s)$ given by $$ J(s) = \int_0^\infty \frac{x^s}{1+e^x}dx. $$ Expand the denominator using geometric series, like so: $$ J(s) = \sum_{k\geq0}\int_0^\infty (-1)^k x^s e^{-(1+k)x}dx$$ $$ = \sum_{k\geq1} \frac{(-1)^{k+1}}{k^{s+1}} \int_0^\infty x^s e^{-x}dx$$ Now, the sum is the Dirichlet eta function, related to the Riemann zeta function like so, $$ \sum_{k\geq1}\frac{(-1)^{k+1}}{k^{s+1}} = (1-2^{-s})\zeta(s+1), $$ and the integral is $\Gamma(1+s)$. Thus $$ J(s) = (1-2^{-s})\zeta(1+s) \Gamma(1+s). $$
To find the derivative at $s=0$ we need the Laurent series for each of these functions at $s=0$, ($\zeta(1+s)$ is singular at $s=0$, but $1-2^{-s}$ has a zero there, so $J$ is regular), they are $$ (1-2^{-s})\zeta(1+s) = \log2 + (\gamma \log 2 - \frac{(\log 2)^2}{2})s + O(s^2), $$ $$ \Gamma(1+s) = 1 - \gamma s + O(s^2), $$ where $\gamma$ is Euler's constant. Multiplying the two series and taking the coefficient of $s$, we get $$ \frac{d J}{ds}(0) = -\frac12 (\log 2)^2, $$ which is the integral you were looking for.
Work out where the poles are, choose the right contour integral, show parts of the contour integral vanish, count the residues at the surrounded poles... and you've got your answer :) Fun part is picking the right contour.
– Michael Anderson Jan 19 '12 at 02:46The integral in question is equal to $dJ/ds(0)$ where $$J(s) = \int_0^\infty \frac{x^s}{e^x+1} dx $$ as $$ \frac{d \ }{ds} \int_0^\infty \frac{x^s}{e^x+1} dx = \int_0^\infty \frac{\partial \ }{\partial s} \frac{x^s}{e^x+1} dx = \int_0^\infty \frac{ (\ln x)x^s}{e^x+1} dx $$
It wasn't too hard to write down an expression for J(s) but upon differentiating it and evaluating it at $s = 0$, I ran into trouble again with convergence.
– Simon S Jan 19 '12 at 18:22