Added: you can also write the form as
$$ (26x_1 + 5 x_2 )^2 + (12 x_1 + 10 x_2 + 31 x_3)^2 + 5 (4 x_1 + 10 x_2)^2 $$
ORIGINAL: If you wish, you can just find the eigenvalues of the Hessian matrix of second partials, or half the Hessian... Just checked, the eigenvalues will be really ugly, as the characteristic polynomial is irreducible (and has enormous entries). So, you are better off doing "congruence diagonalization"
$$ Q^T D Q = H $$
$$\left(
\begin{array}{rrr}
1 & 0 & 0 \\
\frac{ 1 }{ 2 } & 1 & 0 \\
\frac{ 31 }{ 75 } & \frac{ 31 }{ 100 } & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrr}
900 & 0 & 0 \\
0 & 400 & 0 \\
0 & 0 & \frac{ 3844 }{ 5 } \\
\end{array}
\right)
\left(
\begin{array}{rrr}
1 & \frac{ 1 }{ 2 } & \frac{ 31 }{ 75 } \\
0 & 1 & \frac{ 31 }{ 100 } \\
0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrr}
900 & 450 & 372 \\
450 & 625 & 310 \\
372 & 310 & 961 \\
\end{array}
\right)
$$
Algorithm discussed at http://math.stackexchange.com/questions/1388421/reference-for-linear-algebra-books-that-teach-reverse-hermite-method-for-symmetr
https://en.wikipedia.org/wiki/Sylvester%27s_law_of_inertia
$$ H = \left(
\begin{array}{rrr}
900 & 450 & 372 \\
450 & 625 & 310 \\
372 & 310 & 961 \\
\end{array}
\right)
$$
$$ D_0 = H $$
$$ E_j^T D_{j-1} E_j = D_j $$
$$ P_{j-1} E_j = P_j $$
$$ E_j^{-1} Q_{j-1} = Q_j $$
$$ P_j Q_j = Q_j P_j = I $$
$$ P_j^T H P_j = D_j $$
$$ Q_j^T D_j Q_j = H $$
$$ H = \left(
\begin{array}{rrr}
900 & 450 & 372 \\
450 & 625 & 310 \\
372 & 310 & 961 \\
\end{array}
\right)
$$
==============================================
$$ E_{1} = \left(
\begin{array}{rrr}
1 & - \frac{ 1 }{ 2 } & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{1} = \left(
\begin{array}{rrr}
1 & - \frac{ 1 }{ 2 } & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{1} = \left(
\begin{array}{rrr}
1 & \frac{ 1 }{ 2 } & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{1} = \left(
\begin{array}{rrr}
900 & 0 & 372 \\
0 & 400 & 124 \\
372 & 124 & 961 \\
\end{array}
\right)
$$
==============================================
$$ E_{2} = \left(
\begin{array}{rrr}
1 & 0 & - \frac{ 31 }{ 75 } \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{2} = \left(
\begin{array}{rrr}
1 & - \frac{ 1 }{ 2 } & - \frac{ 31 }{ 75 } \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{2} = \left(
\begin{array}{rrr}
1 & \frac{ 1 }{ 2 } & \frac{ 31 }{ 75 } \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{2} = \left(
\begin{array}{rrr}
900 & 0 & 0 \\
0 & 400 & 124 \\
0 & 124 & \frac{ 20181 }{ 25 } \\
\end{array}
\right)
$$
==============================================
$$ E_{3} = \left(
\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & - \frac{ 31 }{ 100 } \\
0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P_{3} = \left(
\begin{array}{rrr}
1 & - \frac{ 1 }{ 2 } & - \frac{ 31 }{ 120 } \\
0 & 1 & - \frac{ 31 }{ 100 } \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q_{3} = \left(
\begin{array}{rrr}
1 & \frac{ 1 }{ 2 } & \frac{ 31 }{ 75 } \\
0 & 1 & \frac{ 31 }{ 100 } \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D_{3} = \left(
\begin{array}{rrr}
900 & 0 & 0 \\
0 & 400 & 0 \\
0 & 0 & \frac{ 3844 }{ 5 } \\
\end{array}
\right)
$$
==============================================
$$ P^T H P = D $$
$$\left(
\begin{array}{rrr}
1 & 0 & 0 \\
- \frac{ 1 }{ 2 } & 1 & 0 \\
- \frac{ 31 }{ 120 } & - \frac{ 31 }{ 100 } & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrr}
900 & 450 & 372 \\
450 & 625 & 310 \\
372 & 310 & 961 \\
\end{array}
\right)
\left(
\begin{array}{rrr}
1 & - \frac{ 1 }{ 2 } & - \frac{ 31 }{ 120 } \\
0 & 1 & - \frac{ 31 }{ 100 } \\
0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrr}
900 & 0 & 0 \\
0 & 400 & 0 \\
0 & 0 & \frac{ 3844 }{ 5 } \\
\end{array}
\right)
$$
$$ Q^T D Q = H $$
$$\left(
\begin{array}{rrr}
1 & 0 & 0 \\
\frac{ 1 }{ 2 } & 1 & 0 \\
\frac{ 31 }{ 75 } & \frac{ 31 }{ 100 } & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrr}
900 & 0 & 0 \\
0 & 400 & 0 \\
0 & 0 & \frac{ 3844 }{ 5 } \\
\end{array}
\right)
\left(
\begin{array}{rrr}
1 & \frac{ 1 }{ 2 } & \frac{ 31 }{ 75 } \\
0 & 1 & \frac{ 31 }{ 100 } \\
0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrr}
900 & 450 & 372 \\
450 & 625 & 310 \\
372 & 310 & 961 \\
\end{array}
\right)
$$